Submitted:
10 October 2023
Posted:
13 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Research methodology
2.1. Location and layout of the study
- I.
- C - Control - normal conditions (plant growing under normal conditions, without Biostimulant and without water deficit)
- II.
- CS - Control stress - water deficit conditions (40% FC; plant growing under water deficit condition, without Biostimulant)
- III.
- B - Biostimulant - normal condition with biostimulant (plant growing under normal conditions, with biostimulant application)
- IV.
- BS - Biostimulant stress - water deficit conditions (40% FC) with Biostimulant (plant growing under water deficit condition, with Biostimulant application).
2.1.1. Catalase and Peroxidase activity
2.1.2. Catalase assay:
2.1.3. Peroxidase assay:
2.1.4. Malondialdehyde (MDA) Measurement
2.2. Elemental Analysis
2.3. Statistical analysis
3. Results
4. Discussion
5. Conclusion
References
- Maillard, A., Ali, N., Schwarzenberg, A., Jamois, F., Yvin, J.-C., & Hosseini, S. A. (2018). Silicon transcriptionally regulates sulfur and ABA metabolism and delays leaf senescence in barley under combined sulfur deficiency and osmotic stress. Environmental and Experimental Botany, 155, 394–410. https://doi.org/10.1016/j.envexpbot.2018.07.026. [CrossRef]
- Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food Security: The Challenge of Feeding 9 Billion People. Science, 327(5967), 812–818. https://doi.org/10.1126/science.1185383. [CrossRef]
- Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11(1), 163. https://doi.org/10.1186/1471-2229-11-163. [CrossRef]
- Seiler, C., Harshavardhan, V. T., Rajesh, K., Reddy, P. S., Strickert, M., Rolletschek, H., Scholz, U., Wobus, U., & Sreenivasulu, N. (2011). ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. Journal of Experimental Botany, 62(8), 2615–2632. https://doi.org/10.1093/jxb/erq446. [CrossRef]
- Bechtold, U., & Field, B. (2018). Molecular mechanisms controlling plant growth during abiotic stress. Journal of Experimental Botany, 69(11), 2753–2758. https://doi.org/10.1093/jxb/ery157. [CrossRef]
- Hosseini, E., Majidi, M. M., Saeidnia, F., & Ehtemam, M. H. (2022). Genetic analysis and physiological relationships of drought response in fennel: Interaction with mating system. PLOS ONE, 17(11), Artykuł e0277926. https://doi.org/10.1371/journal.pone.0277926. [CrossRef]
- Wiesnerová, Lucie, Hřebečková, Tereza, Jablonský, Ivan and Koudela, Martin. "Effect of different water contents in the substrate on cultivation of Pleurotus ostreatus Jacq. P. Kumm" Folia Horticulturae, vol.35, no.1, 3923, pp.25-31. https://doi.org/10.2478/fhort-2023-0002. [CrossRef]
- Adnan, M. (2020a). Application of Selenium A Useful Way to Mitigate Drought Stress: A Review. Open Access Journal of Biogeneric Science and Research, 3(1). https://doi.org/10.46718/jbgsr.2020.03.000064. [CrossRef]
- Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212. https://doi.org/10.1051/agro:2008021. [CrossRef]
- Jogawat, A., Yadav, B., Chhaya, Lakra, N., Singh, A. K., & Narayan, O. P. (2021). Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. Physiologia Plantarum, 172(2), 1106–1132. https://doi.org/10.1111/ppl.13328. [CrossRef]
- Kumar, S., Malik, J., Thakur, P., Kaistha, S., Sharma, K. D., Upadhyaya, H. D., Berger, J. D., & Nayyar, H. (2010). Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta Physiologiae Plantarum, 33(3), 779–787. https://doi.org/10.1007/s11738-010-0602-y. [CrossRef]
- H. Abd El Baky, H., A. Nofal, O., & S. El Baroty, G. (2016). Enhancement of Antioxidant Enzymes Activities, Drought Stress Tolerances and Quality of Potato Plants as Response to Algal Foliar Application. Recent Patents on Food, Nutrition & Agriculture, 8(1), 70–77. https://doi.org/10.2174/2212798408666151230114342. [CrossRef]
- Sivritepe, N., Erturk, U., Yerlikaya, C., Turkan, I., Bor, M., & Ozdemir, F. (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia plantarum, 52(3), 573–576. https://doi.org/10.1007/s10535-008-0114-4. [CrossRef]
- Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy, 9(6), 306. https://doi.org/10.3390/agronomy9060306. [CrossRef]
- Drobek, M., Frąc, M., & Cybulska, J. (2019). Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy, 9(6), 335. https://doi.org/10.3390/agronomy9060335. [CrossRef]
- Molnar, S., Clapa, D., & Mitre, V. (2022). Response of the Five Highbush Blueberry Cultivars to In Vitro Induced Drought Stress by Polyethylene Glycol. Agronomy, 12(3), 732. https://doi.org/10.3390/agronomy12030732. [CrossRef]
- Bryla, D.R. Chapter 9. Crop evapotranspiration and irrigation scheduling in blueberry. In Evapotranspiration—From Measurements to Agricultural and Environmental Applications; Gerosa, G., Ed.; Intech: Rijeka, Croatia, 2011; pp. 167–186.
- Kumlay, Ahmet Metin, Kocak, Mehmet Zeki, Gohari, Gholamreza, Nouraein, Mojtaba, Celikcan, Ferdi, Kaysim, Mustafa Guven and Kulak, Muhittin. "Agronomic traits, secondary metabolites and element concentrations of Lavandula angustifolia leaves as a response to single or reiterated drought stress: How effective is the previously experienced stress?" Folia Horticulturae, vol.34, no.1, 3922, pp.1-16. https://doi.org/10.2478/fhort-2022-0005. [CrossRef]
- Strik, B.C. Blueberry: An expanding world berry crop. Chron. Hortic. 2005, 45, 7–12.
- Brazelton, C. World Blueberry Acreage & Production; USHBC: Folsom, CA, USA, 2011; Available online: www.oregonblueberry.com.
- Lenart, A., Wrona, D., & Krupa, T. (2022). Health—Promoting Properties of Highbush Blueberries Depending on Type of Fertilization. Agriculture, 12(10), 1741. https://doi.org/10.3390/agriculture12101741. [CrossRef]
- Howell, A.B. Update on health benefits of cranberry and blueberry. Acta Hortic. 2009, 810, 779–785.
- Irani, H., ValizadehKaji, B., & Naeini, M. R. (2021). Biostimulant-induced drought tolerance in grapevine is associated with physiological and biochemical changes. Chemical and Biological Technologies in Agriculture, 8(1). https://doi.org/10.1186/s40538-020-00200-9. [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. (Amst.) 2015, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021. [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 1655. https://doi.org/10.3389/fpls.2018.01655. [CrossRef]
- Atzmon N., Van Staden J. 1994. The effect of seaweed concentrate on the growth of Pinus pinea seedlings. New For 8: 279–288.
- Kapłan M., Baryła P., Krawiec M., Kiczorowski P., 20213. Effect of N Pro Technology and seactiv complex on growth, yield, quantity and quality of ’Szampion’ apple trees. Acta Sci. Pol., Hortorum Cultus 12(6) 2013, 45–56.
- Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., & Ferrante, A. (2014). Biostimulants and crop responses: a review. Biological Agriculture & Horticulture, 31(1), 1–17. https://doi.org/10.1080/01448765.2014.964649. [CrossRef]
- Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in Plant Science: A Global Perspective. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.02049. [CrossRef]
- Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1). https://doi.org/10.1186/s40538-017-0089-5. [CrossRef]
- Chan, K. X., Wirtz, M., Phua, S. Y., Estavillo, G. M., & Pogson, B. J. (2013). Balancing metabolites in drought: the sulfur assimilation conundrum. Trends in Plant Science, 18(1), 18–29. https://doi.org/10.1016/j.tplants.2012.07.005. [CrossRef]
- Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037. [CrossRef]
- Slesak, I., Libik, M., Karpinska, B., Karpinski, S., & Miszalski, Z. (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica, 54(1), 39–50. https://doi.org/10.18388/abp.2007_3267. [CrossRef]
- Bhattacharjee, S. (2012). The Language of Reactive Oxygen Species Signaling in Plants. Journal of Botany, 2012, 1–22. https://doi.org/10.1155/2012/985298. [CrossRef]
- Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses. International Journal of Molecular Sciences, 16(12), 13561–13578. https://doi.org/10.3390/ijms160613561. [CrossRef]
- Bauwe, H., Hagemann, M., Kern, R., & Timm, S. (2012). Photorespiration has a dual origin and manifold links to central metabolism. Current Opinion in Plant Biology, 15(3), 269–275. https://doi.org/10.1016/j.pbi.2012.01.008. [CrossRef]
- Voss, I., Sunil, B., Scheibe, R., & Raghavendra, A. S. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15(4), 713–722. https://doi.org/10.1111/j.1438-8677.2012.00710.x. [CrossRef]
- FALLAHI, H.-R., TAHERPOUR KALANTARI, R., AGHHAVANI-SHAJARI, M., & SOLTANZADEH, M.-G. (2015). Effect of Super Absorbent Polymer and Irrigation Deficit on Water Use Efficiency, Growth and Yield of Cotton. Notulae Scientia Biologicae, 7(3), 338–344. https://doi.org/10.15835/nsb739626. [CrossRef]
- Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., Ju, Y., & Fang, Y. (2019). Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiology and Biochemistry, 135, 99–110. https://doi.org/10.1016/j.plaphy.2018.11.037. [CrossRef]
- Sharma, H. S. S., Fleming, C., Selby, C., Rao, J. R., & Martin, T. (2013). Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26(1), 465–490. https://doi.org/10.1007/s10811-013-0101-9. [CrossRef]
- Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., & Therios, I. (2006). Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environmental and Experimental Botany, 56(1), 54–62. https://doi.org/10.1016/j.envexpbot.2005.01.002. [CrossRef]
- Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84–93. https://doi.org/10.1016/j.biotechadv.2008.09.003. [CrossRef]
- SMIRNOFF, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125(1), 27–58. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x. [CrossRef]
- Mansori, M., Farouk, IA., Hsissou, D., El Kaoua, M. (2019). Seaweed extract treatment enhances vegetative growth and antioxidant parameters in water stressed Salvia officinalis L. J Mater Environ Sci. 10(8):756–66.
- Rombel-Bryzek A., i Pisarek I., Wpływ kwasów huminowych na aktywność metaboliczną buraka cukrowego w warunkach suszy, „Proceedings of ECOpole”, 2017, t.11, s. 279–286. https://doi.org/10.2429/proc.2017.11(1)030. [CrossRef]
- Spann, T. M., & Little, H. A. (2011). Applications of a Commercial Extract of the Brown Seaweed Ascophyllum nodosum Increases Drought Tolerance in Container-grown ‘Hamlin’ Sweet Orange Nursery Trees. HortScience, 46(4), 577–582. https://doi.org/10.21273/hortsci.46.4.577. [CrossRef]
- Santaniello, A., Scartazza, A., Gresta, F., Loreti, E., Biasone, A., Di Tommaso, D., Piaggesi, A., & Perata, P. (2017). Ascophyllum nodosum Seaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performance and Related Gene Expression. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01362. [CrossRef]
- Goñi, O., Fort, A., Quille, P., McKeown, P. C., Spillane, C., & O’Connell, S. (2016). Comparative Transcriptome Analysis of Two Ascophyllum Nodosum Extract Biostimulants: Same Seaweed but Different. Journal of Agricultural and Food Chemistry, 64(14), 2980–2989. https://doi.org/10.1021/acs.jafc.6b00621. [CrossRef]
- Elansary, H. O., Skalicka-Woźniak, K., & King, I. W. (2016). Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments. Plant Physiology and Biochemistry, 105, 310–320. https://doi.org/10.1016/j.plaphy.2016.05.024. [CrossRef]
- Lola-Luz, T., Hennequart, F., & Gaffney, M. (2014). Effect on health promoting phytochemicals following seaweed application, in potato and onion crops grown under a low input agricultural system. Scientia Horticulturae, 170, 224–227. https://doi.org/10.1016/j.scienta.2014.03.022. [CrossRef]
- Liu, H., Zhang, Y.-H., Yin, H., Wang, W.-X., Zhao, X.-M., & Du, Y.-G. (2013). Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiology and Biochemistry, 62, 33–40. https://doi.org/10.1016/j.plaphy.2012.10.012. [CrossRef]
- Baker, N. R. (Red.). (1996). Photosynthesis and the Environment. Springer Netherlands. https://doi.org/10.1007/0-306-48135-9. [CrossRef]
- Goñi, O., Quille, P., & O'Connell, S. (2018). Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiology and Biochemistry, 126, 63–73. https://doi.org/10.1016/j.plaphy.2018.02.024. [CrossRef]
- Sabir, A., Yazar, K., Sabir, F., Kara, Z., Yazici, M. A., & Goksu, N. (2014). Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Scientia Horticulturae, 175, 1–8. https://doi.org/10.1016/j.scienta.2014.05.021. [CrossRef]
- Jannin, L., Arkoun, M., Etienne, P., Laîné, P., Goux, D., Garnica, M., Fuentes, M., Francisco, S. S., Baigorri, R., Cruz, F., Houdusse, F., Garcia-Mina, J.-M., Yvin, J.-C., & Ourry, A. (2012). Brassica napus Growth is Promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed Extract: Microarray Analysis and Physiological Characterization of N, C, and S Metabolisms. Journal of Plant Growth Regulation, 32(1), 31–52. https://doi.org/10.1007/s00344-012-9273-9. [CrossRef]
- Nair, P., Kandasamy, S., Zhang, J., Ji, X., Kirby, C., Benkel, B., Hodges, M. D., Critchley, A. T., Hiltz, D., & Prithiviraj, B. (2012). Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics, 13(1), 643. https://doi.org/10.1186/1471-2164-13-643. [CrossRef]
- Sivasankari, S., Venkatesalu, V., Anantharaj, M., & Chandrasekaran, M. (2006). Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresource Technology, 97(14), 1745–1751. https://doi.org/10.1016/j.biortech.2005.06.016. [CrossRef]
- Mancuso, S., Azzarello, E., Mugnai, S., Briand, X.,(2006) Marine bioactive substance (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv Hortic Sci 20:156–161.
- Spinelli, F., Fiori, G., Noferini, M., Sprocatti, M., & Costa, G. (2010). A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Scientia Horticulturae, 125(3), 263–269. https://doi.org/10.1016/j.scienta.2010.03.011. [CrossRef]
- Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., & Prithiviraj, B. (2009). Seaweed Extracts as Biostimulants of Plant Growth and Development. Journal of Plant Growth Regulation, 28(4), 386–399. https://doi.org/10.1007/s00344-009-9103-x. [CrossRef]
- Rathore, S. S., Chaudhary, D. R., Boricha, G. N., Ghosh, A., Bhatt, B. P., Zodape, S. T., & Patolia, J. S. (2009). Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South African Journal of Botany, 75(2), 351–355. https://doi.org/10.1016/j.sajb.2008.10.009. [CrossRef]
- Roussos, P. A., Denaxa, N.-K., & Damvakaris, T. (2009). Strawberry fruit quality attributes after application of plant growth stimulating compounds. Scientia Horticulturae, 119(2), 138–146. https://doi.org/10.1016/j.scienta.2008.07.021. [CrossRef]
- Singh, M. (2014). Plant Tolerance Mechanism Against Salt Stress: The Nutrient Management Approach. Biochemistry & Pharmacology: Open Access, 03(05). https://doi.org/10.4172/2167-0501.1000e165. [CrossRef]
- Lenart, A., Wrona, D., Klimek, K., Kapłan, M., & Krupa, T. (2022). Assessment of the impact of innovative fertilization methods compared to traditional fertilization in the cultivation of highbush blueberry. PLOS ONE, 17(7), Artykuł e0271383. https://doi.org/10.1371/journal.pone.0271383. [CrossRef]
| Nutrient solution used for watering | ||
|---|---|---|
| Element | Product | element per pot and per supply (g) |
| N | Ammonium sulfate | 0.307 |
| P2O5 | Potassium phosphate | 0.231 |
| K2O | Potassium sulfate | 0.538 |
| Mg | MgSO4, 7H2O | 0.153 |
| Mn | MnSO4, H2O | 0.006 |
| Zn | ZnSO4, 5H2O | 0.009 |
| B | H3BO3 | 0.001 |
| Cu | CuSO4, 5H2O | 0.000 |
| Fe | EDTA, 2NaFe, H2O | 0.011 |
| Plant extracts, including marine algae | N | P | K | B | Cu | Mo |
|---|---|---|---|---|---|---|
| 30% | 3% | 3% | 9% | 0,01% | 0,002% | 0,001% |
| Modality | Sampling date | ||||||
| 0 | 2 | 8 | 12 | 15 | p-value | ||
| Catalase concentration (µmol/min/g-1 FW) |
C | 176.6 ± 16.4Aa | 201.8 ± 7.8Aa | 282.7 ± 3.8Ab | 163.6 ± 23.2Aa | 162.8 ± 36.3Aa | 0.0001 |
| B | 182.4 ± 60.3Aa | 352.6 ± 9.6Bb | 347.4 ± 3.7Bb | 325.5 ± 46.7Bb | 219.5 ± 2.0Ba | 0.0001 | |
| p-value | 0.9733 | 0.0332 | 0.0155 | 0.01048 | 0.0461 | ||
| MDA concentration (mg/g-1 FW) |
C | 0.051 ± 0.003Ab | 0.057 ± 0.006Ab | 0.046 ± 0.005Ab | 0.033 ± 0.004Aa | 0.048 ± 0.007Ab | 0.0430 |
| B | 0.048 ± 0.005Ab | 0.045 ± 0.007Aab | 0.042 ± 0.003Aab | 0.034 ± 0.005Aa | 0.037 ± 0.008Aab | 0.0767 | |
| p-value | 0.9581 | 0.2407 | 0.5517 | 0.5011 | 0.1344 | ||
| Peroxydase concentration (µmol/min/g-1 FW) |
C | 0.043 ± 0.004Ab | 0.047 ± 0.008Ab | 0.047 ± 0.008Ab | 0.067 ± 0.013Ac | 0.029 ± 0.003Aa | 0.0001 |
| B | 0.036 ± 0.005Aa | 0.063 ± 0.014Ab | 0.032 ± 0.009Aa | 0.055 ± 0.010Ab | 0.021 ± 0.010Aa | 0.0013 | |
| p-value | 0.1641 | 0.8611 | 0.0671 | 0.0719 | 0.8391 | ||
| Modality | Sampling date | ||||||
| 0 | 2 | 8 | 12 | 15 | p-value | ||
| Catalase concentration (µmol/min/g-1 FW) |
CS | 250.4 ± 23.6Ab | 317.2 ± 48.9Ab | 298.9 ± 11.9 Ab | 252.3 ± 0.3Ab | 199.9 ± 12.1Aa | 0.0004 |
| BS | 292.1 ± 3.7Bb | 357.0 ± 8.7Bcd | 324.8 ± 6.7 Bc | 374.2 ± 36.1Bd | 234.0 ± 0.9Ba | 0.0001 | |
| p-value | 0.0087 | 0.0419 | 0.0428 | 0.0267 | 0.0366 | ||
| MDA concentration (mg/g-1 FW) |
CS | 0.032 ± 0.001Aa | 0.053 ± 0.001Ac | 0.043 ± 0.002Ab | 0.042 ± 0.006Ab | 0.097 ± 0.001Bd | 0.0001 |
| BS | 0.055 ± 0.001Bab | 0.053 ± 0.002Aa | 0.056 ± 0.001Bb | 0.048 ± 0.006Aa | 0.061 ± 0.001Ab | 0.1365 | |
| p-value | 0.0289 | 0.4611 | 0.0709 | 0.9436 | <0,001 | ||
| Peroxydase concentration (µmol/min/g-1 FW) |
CS | 0.035 ± 0.004Ab | 0.028 ± 0.018Aa | 0.019 ± 0.008Aa | 0.026 ± 0.001Aa | 0.024 ± 0.001Ba | 0.0030 |
| BS | 0.045 ± 0.015Ac | 0.022 ± 0.005Ab | 0.035 ± 0.013Abc | 0.024 ± 0.001Ab | 0.015 ± 0.001Aa | 0.0164 | |
| p-value | 0.8783 | 0.8102 | 0.1436 | 0.3451 | 0.0164 | ||
| Modality | Sampling date | ||||||
| 0 | 2 | 8 | 12 | 15 | p-value | ||
| Nitrogen concentration (mg/g-1 DW) |
C | 21.9 ± 1.2Aa | 22.5 ± 0.3Aa | 24.1 ± 2.8Aa | 22.6 ± 0.8Aa | 24.1 ± 1.8Aa | 0.4234 |
| B | 21.6 ± 4.1Aa | 24.2 ± 2.7Aa | 23.9 ± 1.1Aa | 24.4 ± 2.4Aa | 24.6 ± 2.4Aa | 0.6353 | |
| p-value | 0.8858 | 0.3645 | 0.9833 | 0.2769 | 0.8027 | ||
| Carbon concentration (mg/g-1 DW) |
C | 492.1 ± 8.7Aa | 499.5 ± 3.5Aa | 491.2 ± 4.8Aa | 489.7 ± 5.5Aa | 492.9 ± 2.8Aa | 0.2983 |
| B | 492.6 ± 4.6Aa | 495.5 ± 2.8Aa | 490.4 ± 4.6Aa | 488.5 ± 5.4Aa | 498.0 ± 3.4Aa | 0.1150 | |
| p-value | 0.9292 | 0.1943 | 0.8462 | 0.7902 | 0.1179 | ||
| Nitrogen concentration (mg/g-1 DW) |
CS | 22.9 ± 0.9Aa | 24.2 ± 1.9Aa | 23.3 ± 1.9Aa | 25.2 ± 0.5Aa | 23.4 ± 1.9Aa | 0.4315 |
| BS | 23.2 ± 4.9Aa | 24.3 ± 1.1Aa | 24.9 ± 2.4Aa | 26.7 ± 1.9Aa | 27.5 ± 0.6Aa | 0.3346 | |
| p-value | 0.9284 | 0.9747 | 0.4348 | 0.2761 | 0.225 | ||
| Carbon concentration (mg/g-1 DW) |
CS | 496.2 ± 1.6Aa | 495.9 ± 3.5Aa | 492.9 ± 4.4Aa | 497.2 ± 1.6Aa | 490.5 ± 14.7Aa | 0.7723 |
| BS | 489.7 ± 1.8 Aa | 486.3 ± 3.6Aa | 495.1 ± 7.4Aa | 489.1 ± 4.2Aa | 491.9 ± 1.9Aa | 0.2152 | |
| p-value | 0.101 | 0.304 | 0.6861 | 0.361 | 0.8703 | ||
| Modality | Sampling date | ||||||
| 0 | 2 | 8 | 12 | 15 | p-value | ||
| SPAD | C | 27.3 ± 3.6Aa | 21.3 ± 2.8Aa | 30.6 ± 2.1Aa | 30.1 ± 4.4Aa | 30.6 ± 5.1Aa | 0.0550 |
| B | 17.8 ± 1.8Aa | 24.3 ± 9.0Aa | 23.8 ± 2.2Aa | 31.0 ± 8.2Ab | 36.7 ± 2.6Ab | 0.0198 | |
| p-value | 0.8315 | 0.0532 | 0.9701 | 0.5416 | 0.2461 | ||
| CS | 21.9 ± 3.6Aa | 20.0 ± 1.7 Aa | 24.4 ± 4.7Aa | 31.6 ± 1.1Ab | 28.2 ± 4.2Ab | 0.0110 | |
| BS | 26.2 ± 3.9Aa | 27.9 ± 5.3 Aa | 30.4 ± 10.4 Aa | 30.5 ± 2.1 Aa | 24.2 ± 12.8 Aa | 0.8443 | |
| p-value | 0.8714 | 0.7619 | 0.5779 | 0.4276 | 0.5208 | ||
| Modality | Sampling date | ||||||
| 0 | 2 | 8 | 12 | 15 | p-value | ||
| K | C | 5.69± 0.60 Aa | 5.88 ± 0.58 Aa | 6.79 ± 1.51 Aa | 7.17 ± 0.79 Aa | 6.59 ± 0.97 Aa | 0.3399 |
| B | 5.67 ± 1.06 Aa | 6.64 ± 0.48 Aa | 5.89 ± 0.46 Aa | 6.86 ± 0.28 Aa | 6.48 ± 0.58 Aa | 0.1796 | |
| p-value | 0.9751 | 0.1556 | 0.3784 | 0.5651 | 0.8721 | ||
| Ca | C | 7.18 ± 0.35 Aa | 7.25 ± 0.64 Aa | 5.87 ± 2.01 Aa | 5.94 ± 0.62 Aa | 6.01 ± 0.27 Aa | 0.2903 |
| B | 6.72 ± 0.57 Aa | 6.06 ± 0.23 Aa | 4.31 ± 0.98 Aa | 4.27 ± 0.78 Aa | 4.65 ± 1.63 Aa | 0.126 | |
| p-value | 0.3074 | 0.399 | 0.2931 | 0.442 | 0.0686 | ||
| Mg | C | 2.16 ± 0.04 Aa | 2.19 ± 0.24 Aa | 1.80 ± 0.47 Aa | 1.85 ± 0.19 Aa | 1.93 ± 0.09 Aa | 0.2886 |
| B | 1.96 ± 0.13 Aa | 1.83 ± 0.11 Aa | 1.46 ± 0.23 Aa | 1.48 ± 0.28 Aa | 1.34 ± 0.37 Aa | 0.0504 | |
| p-value | 0.0679 | 0.0791 | 0.335 | 0.1296 | 0.0566 | ||
| P | C | 1.85 ± 0.19 Aa | 1.78 ± 0.05 Aa | 1.79 ± 0.15 Aa | 1.81 ± 0.07 Aa | 1.66 ± 0.04 Aa | 0.4641 |
| B | 1.74 ± 0.22 Aa | 1.84 ± 0.11 Aa | 1.81 ± 0.16 Aa | 1.85 ± 0.14 Aa | 1.77 ± 0.16 Aa | 0.9139 | |
| p-value | 0.5641 | 0.4813 | 0.8909 | 0.6675 | 0.3411 | ||
| B | C | 0.065 ± 0.01 Aa | 0.06 ± 0.00 Aa | 0.05 ± 0.02 Aa | 0.06 ± 0.01 Aa | 0.06 ± 0.01 Aa | 0.8273 |
| B | 0.06 ± 0.01 Aa | 0.06 ± 0.07 Aa | 0.05 ± 0.01 Aa | 0.05± 0.01 Aa | 0.04 ± 0.01 Aa | 0.2902 | |
| p-value | 0.6164 | 0.3037 | 0.5974 | 0.1131 | 0.0921 | ||
| Fe | C | 0.27 ± 0.12 Aa | 0.32 ± 0.15 Aa | 0.35 ± 0.13 Aa | 0.36 ± 0.09 Aa | 0.34 ± 0.04 Aa | 0.8405 |
| B | 0.28 ± 0.19 Aa | 0.34 ± 0.11 Aa | 0.32 ± 0.15 Aa | 0.34 ± 0.11 Aa | 0.22 ± 0.13 Aa | 0.8387 | |
| p-value | 0.9231 | 0.8946 | 0.7533 | 0.7747 | 0.2071 | ||
| Mn | C | 0.17 ± 0.05 Aa | 0.18 ± 0.03 Aa | 0.17 ± 0.08 Aa | 0.17 ± 0.03 Aa | 0.16 ± 0.02 Aa | 0.9893 |
| B | 0.18 ± 0.05 Aa | 0.16 ± 0.05 Aa | 0.13 ± 0.03 Aa | 0.14 ± 0.04 Aa | 0.11 ± 0.04 Aa | 0.4733 | |
| p-value | 0.8247 | 0.6663 | 0.4842 | 0.2901 | 0.1567 | ||
| S | C | 3.04 ± 0.37 Aa | 2.94 ± 0.36 Aa | 2.84 ± 0.17 Aa | 2.99 ± 0.31 Aa | 2.85 ± 0.46 Aa | 0.9432 |
| B | 2.34 ± 0.13 Aa | 2.48 ± 0.11 Aa | 2.07 ± 0.29 Aa | 2.09 ± 0.16 Aa | 1.92 ± 0.44 Aa | 0.1373 | |
| p-value | 0.368 | 0.1106 | 0.172 | 0.122 | 0.0655 | ||
| Na | C | 0.31 ± 0.06 Aa | 0.31 ± 0.03 Aa | 0.26 ± 0.02 Aa | 0.31 ± 0.07 Aa | 0.25 ± 0.06 Aa | 0.5613 |
| B | 0.25 ± 0.025 Aa | 0.25 ± 0.02 Aa | 0.21 ± 0.09 Aa | 0.19 ± 0.06 Aa | 0.16 ± 0.08 Aa | 0.3985 | |
| p-value | 0.2297 | 0.1381 | 0.3321 | 0.1023 | 0.2206 | ||
| Sampling date | |||||||
| Modality | 0 | 2 | 8 | 12 | 15 | p-value | |
| K | CS | 5.26 ± 1.08Aa | 5.89 ± 1.67Aa | 5.82 ± 1.09 Aa | 6.47 ± 1.36Aa | 6.46 ± 1.79Aa | 0.8187 |
| BS | 6.87 ± 1.16Aa | 7.63 ± 0.65Aa | 7.72 ± 1.05 Aa | 8.42 ± 0.26Ab | 9.27 ± 0.56Ab | 0.0407 | |
| p-value | 0.1543 | 0.1696 | 0.0978 | 0.0712 | 0.0615 | ||
| Ca | CS | 5.49 ± 0.52Aa | 4.94 ± 1.06Aa | 3.98 ± 0.36 Aa | 4.58 ± 0.73Aa | 5.11 ± 1.37Aa | 0.3572 |
| BS | 5.45 ± 1.13Aa | 5.42 ± 0.21Aa | 3.96± 1.41 Aa | 3.61 ± 1.13Aa | 3.96 ± 0.96Aa | 0.1519 | |
| p-value | 0.9625 | 0.4933 | 0.9807 | 0.2796 | 0.3033 | ||
| Mg | CS | 1.72 ± 0.17Aa | 1.55 ± 0.27Aa | 1.41 ± 0.24 Aa | 1.51 ± 0.22Aa | 1.59 ± 0.36Aa | 0.7064 |
| BS | 2.04 ± 0.45Aa | 1.96 ± 0.13Aa | 1.62 ± 0.42 Aa | 1.54 ± 0.28Aa | 1.57 ± 0.23Aa | 0.2728 | |
| p-value | 0.3241 | 0.0813 | 0.5153 | 0.8617 | 0.9484 | ||
| P | CS | 1.74 ± 0.08Aa | 1.81 ± 0.29Aa | 1.79 ± 0.08 Aa | 1.72 ± 0.09Aa | 1.51 ± 0.19Aa | 0.3007 |
| BS | 1.74 ± 0.33Aa | 1.82 ± 0.05Aa | 1.87 ± 0.21 Aa | 1.94 ± 0.41Aa | 1.84 ± 0.09Aa | 0.9016 | |
| p-value | 0.9903 | 0.9703 | 0.5352 | 0.4001 | 0.0562 | ||
| B | CS | 0.05 ± 0.01Aa | 0.05 ± 0.01Aa | 0.03 ± 0.01 Aa | 0.05 ± 0.01Aa | 0.05 ± 0.01Aa | 0.1345 |
| BS | 0.04 ± 0.01Aa | 0.05 ± 0.01Aa | 0.04 ± 0.01 Aa | 0.04 ± 0.01Aa | 0.04 ± 0.01Aa | 0.2563 | |
| p-value | 0.3534 | 0.6887 | 0.5272 | 0.3878 | 0.0571 | ||
| Fe | CS | 0.12 ± 0.05Aa | 0.22 ± 0.07Aa | 0.25± 0.06 Aa | 0.25 ± 0.01Aa | 0.31 ± 0.08Aa | 0.0034 |
| BS | 0.21 ± 0.04Aa | 0.32 ± 0.02Aa | 0.31 ± 0.11 Aa | 0.26 ± 0.08Aa | 0.27 ± 0.04Aa | 0.3411 | |
| p-value | 0.0914 | 0.1217 | 0.5667 | 0.8629 | 0.6917 | ||
| Mn | CS | 0.16 ± 0.07Aa | 0.16 ± 0.03Aa | 0.13 ± 0.02 Aa | 0.16 ± 0.03Aa | 0.17 ± 0.03Aa | 0.7089 |
| BS | 0.19 ± 0.05Aa | 0.18 ± 0.04Aa | 0.14 ± 0.06 Aa | 0.13 ± 0.04Aa | 0.15 ± 0.02Aa | 0.5438 | |
| p-value | 0.5892 | 0.5423 | 0.7204 | 0.4077 | 0.4184 | ||
| S | CS | 2.04 ± 0.31Aa | 2.12 ± 0.23Aa | 1.83 ± 0.17 Aa | 2.02 ± 0.21Aa | 1.97 ± 0.25Aa | 0.6547 |
| BS | 2.49 ± 0.39Aa | 2.60 ± 0.44Aa | 2.19 ± 0.59 Aa | 2.18 ± 0.67Aa | 2.16 ± 0.61Aa | 0.7905 | |
| p-value | 0.1946 | 0.1718 | 0.3684 | 0.7193 | 0.6477 | ||
| Na | CS | 0.22 ± 0.11Aa | 0.25 ± 0.09Aa | 0.18 ± 0.088 Aa | 0.23 ± 0.11Aa | 0.27 ± 0.11Aa | 0.8211 |
| BS | 0.32 ± 0.06Aa | 0.34 ± 0.11Aa | 0.24 ± 0.06 Aa | 0.24 ± 0.05Aa | 0.29 ± 0.03Aa | 0.3896 | |
| p-value | 0.1866 | 0.3704 | 0.3571 | 0.9545 | 0.7591 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
