Submitted:
09 October 2023
Posted:
11 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methodss
2.1. Participants
2.2. Anthropometry
2.3. Maturity status
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarmento, H.; Anguera, M.T.; Pereira, A.; Araújo, D. Talent identification and development in male football: a systematic review. Sports Med. 2018, 48, 907–931. [CrossRef]
- Skorski, S.; Skorski, S.; Faude, O.; Hammes, D.; Meyer T. The Relative Age Effect in German Elite Youth Soccer: Implications for a Successful Career. Int J Sports Physiol Perform. 2016, 11, 370-6. [CrossRef]
- Koz, D.; Fraser-Thomas, J.; Baker, J. Accuracy of professional sports drafts in predicting career potential. Scand. J. Med. Sci. Sports 2012, 22, e64–e69. [CrossRef]
- Güllich A. Selection, deselection and progression in German football talent promotion. Eur J Sport Sci. 2014, 14, 530-7. [CrossRef]
- Lovell, R.; Towlson, C.; Parkin, G.; Portas, M.; Vaeyens, R.; Cobley, S. Soccer Player Characteristics in English Lower-League Development Programmes: The Relationships between Relative Age, Maturation, Anthropometry and Physical Fitness. PloS one 2015, 10. [CrossRef]
- Towlson, C.; Cobley, S.; Parkin, G.; Lovell, R. When does the influence of maturation on anthropometric and physical fitness characteristics increase and subside? Scand J Med Sci Sports 2018, 28, 1946-1955. [CrossRef]
- Hill, M.; Scott, S.; Malina, R.M.; McGee, D.; Cumming, S.P. Relative age and maturation selection biases in academy football. J Sports Sci. 2020, 38, 1359-1367. [CrossRef]
- Meylan, C.; Cronin, J.; Oliver, J.; Hughes, M. Talent identification in soccer: The role of maturity status on physical, physiological and tech- nical characteristics. International Journal of Sports Science & Coaching 2010, 5, 571–592. [CrossRef]
- Alves, C.V.N.; Santos, L.R.; Vianna, J.M.; Novaes, G.S.; Damasceno, V.O. Explosive force in different stages of maturation in young footballers of infantile and juvenile categories. Rev Bras Ciênc Esporte 2015, 37, 199-203.
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; Coelho e Silva, M.J.; Figueiredo, A.J. Biological maturation of youth athletes: assessment and implications. Br J Sports Med 2015, 49, 852-859. [CrossRef]
- Pichardo, A.W.; Oliver, J.L.; Harrison, C.B.; Maulder, P.S.; Lloyd, R.S.; Kandoi, R. The Influence of Maturity Offset, Strength, and Movement Competency on Motor Skill Performance in Adolescent Males. Sports 2019, 7, 168. [CrossRef]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, maturation, and physical activity. 2nd ed.; Human Kinetics: Champaign, IL, 2004.
- Philippaerts, R.M.; Vaeyens, R.; Janssens, M.; Van Renterghem, B.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.; Malina, R.M. The relationship between peak height velocity and physical performance in youth soccer players. J. Sports Sci. 2006, 24, 221–230. [CrossRef]
- Sanders, J.O.; Qiu, X.; Lu, X.; Duren, D.L.; Liu, R.W.; Dang, D.; Menendez, M.E.; Hans, S.D.; Weber, D.R.; Cooperman, D.R. The Uniform Pattern of Growth and Skeletal Maturation during the Human Adolescent Growth Spurt. Sci Rep. 2017, 7, 16705. doi: 10.1038/s41598-017-16996-w.
- Baxter-Jones, A.D.G. Growth, maturation, and training. In: Handbook of Sports Medicine and Science: Gymnastics. Caine, D.J., Russell, K.W., Lim, L., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2013; pp. 17–27.
- Tanner, J.M. Growth at Adolescence: With a General Consideration of the Effects of Hereditary and Environmental Factors upon Growth and Maturation from Birth to Maturity. Eds.; Blackwell Scientific Publications: Oxford, UK, 1962.
- Stang, J.; Story, M. Adolescent growth and development. In: Guidelines for Adolescent Nutrition Service. Stang, J., Story M., Eds.; School of Public Health, University of Minnesota: Minnesota, US, 2005; pp. 1–8.
- Cumming, S.P.; Lloyd, R.S.; Oliver, J.L.; Eisenmann, J.C.; Malina, R.M. Bio-banding in Sport: Applications to Competition, Talent Identification, and Strength and Conditioning of Youth Athletes. Strength Cond. J. 2017, 39, 34–47. [CrossRef]
- Malina, R.M.; Peña Reyes, M.E.; Eisenmann, J.C.; Horta, L.; Rodrigues, J.; Miller, R. Height, mass and skeletal maturity of elite Portuguese soccer players aged 11-16 years. J Sports Sci. 2000, 18, 685-693. [CrossRef]
- Coelho E Silva, M.J.; Figueiredo, A.J.; Simões, F.; Seabra, A.; Natal, A.; Vaeyens, R.; Philippaerts, R.; Cumming, S.P.; Malina, R.M. Discrimination of u-14 soccer players by level and position. Int J Sports Med. 2010, 31, 790-796. [CrossRef]
- Madden, A.M.; Smith, S. Body composition and morphological assessment of nutritional status in adults: a review of anthropometric variables. J Hum Nutr Diet 2016, 29, 7–25. [CrossRef]
- Duren, D.L.; Sherwood, R.J.; Czerwinski, S.A.; Lee, M.; Choh, A.C.; Siervogel, R.M.; Cameron Chumlea, W. Body composition methods: comparisons and interpretation. J Diabetes Sci Technol. 2008, 2, 1139-46. [CrossRef]
- Leahy, S.; O’Neill, C.; Sohun, R.; Jakeman, P. A comparison of dual energy X-ray absorptiometry and bio- electrical impedance analysis to measure total and segmental body composition in healthy young adults. Eur J Appl Physiol. 2012, 112, 589–95. doi: 10.1007/s00421-011-2010-4.
- Thibault, R.; Pichard, C. The evaluation of body composition: a useful tool for clinical practice. Ann Nutr Metab. 2012, 60, 6-16. [CrossRef]
- Buckinx, F.; Reginster, J.Y.; Dardenne, N.; Croisiser, J.L.; Kaux, J.F.; Beaudart, C.; Slomian, J.; Bruyère, O. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskelet Disord. 2015, 18, 16-60. [CrossRef]
- Larsen, M.N.; Krustrup, P.; Araújo Póvoas, S.C.; Castagna, C. Accuracy and reliability of the InBody 270 multi-frequency body composition analyser in 10-12-year-old children. PLoS One 2021, 16. [CrossRef]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J Clin Densitom. 2018, 23, 443-450. [CrossRef]
- Lahav, Y.; Goldstein, N.; Gepner, Y. Comparison of body composition assessment across body mass index categories by two multifrequency bioelectrical impedance analysis devices and dual-energy X-ray absorptiometry in clinical settings. Eur J Clin Nutr 2021, 75, 1275-1282. [CrossRef]
- Wen Lee, Li.; Yu-San, Liao.; Hsueh-Kuan, Lu.; Pei-Lin, Hsiao.; Yu-Yawn, Chen.; Ching-Chi, Chi.; Kuen-Chang, Hsieh. Validation of two portable bioelectrical impedance analyses for the assessment of body composition in school age children. PLoS One 2017, 12. [CrossRef]
- Fosbøl, M.; Zerahn, B. Contemporary methods of body composition measurement. Clin Physiol Funct Imaging. 2015; 35, 81–97. [CrossRef]
- Müller, L.; Müller, E.; Hildebrandt, C.; Kapelari, K.; Raschner, C. Die Erhebung des biologischen Entwicklungsstandes für die Talentselektion - welche Methode eignet sich. Sportverletz Sportschaden 2015, 29, 56-63. [CrossRef]
- Leão, C.; Silva, A.F.; Badicu, G.; Clemente, F.M.; Carvutto, R.; Greco, G.; Cataldi, S.; Fischetti, F. Body Composition Interactions with Physical Fitness: A Cross-Sectional Study in Youth Soccer Players. Int J Environ Res Public Health 2022, 18, 3598. [CrossRef]
- Chena Sinovas, M.; Pérez-López, A.; Álvarez Valverde, I.; Bores Cerezal, A.; Ramos-Campo, D.J.; Rubio-Arias, J.Á.; Valadés Cerrato, D. Influence of body composition on vertical jump performance according with the age and the playing position in football players. Nutr Hosp 2015, 32, 299–307. [CrossRef]
- Rusek W, Baran J, Leszczak J, Adamczyk M, Baran R, Weres A, Inglot G, Czenczek-Lewandowska E, Pop T. Changes in Children’s Body Composition and Posture during Puberty Growth. Children 2021, 8, 288. [CrossRef]
- Bernal-Orozco, M.F.; Posada-Falomir, M.; Quiñónez-Gastélum, C.M.; Plascencia-Aguilera, L.P.; Arana-Nuño, J.R.; Badillo-Camacho, N.; Márquez-Sandoval, F.; Holway, F.E.; Vizmanos-Lamotte, B. Anthropometric and Body Composition Profile of Young Professional Soccer Players. J Strength Cond Res. 2020, 34, 1911-1923. [CrossRef]
- Gravina, L.; Gil, S.M.; Ruiz, F.; Zubero, J.; Gil, J.; Irazusta, J. Anthropometric and physiological differences between first team and reserve soccer players aged 10-14 years at the beginning and end of the season. J Strength Cond Res. 2008, 22, 1308-14. doi: 10.1519/JSC.0b013e31816a5c8e.
- le Gall, F.; Carling, C.; Williams, M.; Reilly, T. Anthropometric and fitness characteristics of international, professional and amateur male graduate soccer players from an elite youth academy. J Sci Med Sport 2010, 13, 90–95. doi: 10.1016/j.jsams.2008.07.004.
- Carling, C.; Orhant, E. Variation in body composition in professional soccer players: Interseasonal and intraseasonal changes and the effects of exposure time and player position. J Strength Cond Res 2010, 24, 1332–1339. [CrossRef]
- Gil, S.M.; Gil, J.; Ruiz, F.; Irazusta, A.; Irazusta, J. Physiological and anthropometric characteristics of young soccer players according to their playing position: Relevance for the selection process. J Strength Cond Res 2007, 21, 438–445.
- Hencken, C.; White, C. Anthropometric assessment of premiership soccer players in relation to playing position. Eur J Sport Sci 2006, 6, 205–211. [CrossRef]
- Owen, A.L.; Lago-Peñas, C.; Dunlop, G.; Mehdi, R.; Chtara, M.; Dellal, A. Seasonal Body Composition Variation Amongst Elite European Professional Soccer Players: An Approach of Talent Identification. J Hum Kinet. 2018, 13, 177-184. [CrossRef]
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; García-Roca, J.A.; Esparza-Ros, F. Influence of biological maturation status on selected anthropometric and physical fitness variables in adolescent male volleyball players. Peer J. 2022, 5, e13216. doi: 10.7717/peerj.13216.
- Campa, F; Silva, A.M.; Iannuzzi, V.; Mascherini, G.; Benedetti, L.; Toselli, S. The Role of Somatic Maturation on Bioimpedance Patterns and Body Composition in Male Elite Youth Soccer Players. Int J Environ Res Public Health, 2019, 16, 4711. [CrossRef]
- Zheng, Y.; Liang, J.; Zeng, D.; Tan, W.; Yang, L.; Lu, S.; Yao, W.; Yang, Y.; Liu, L. Association of body composition with pubertal timing in children and adolescents from Guangzhou, China. Front Public Health 2022, 17. [CrossRef]
- Toselli, S.; Marini, E.; Maietta Latessa, P.; Benedetti, L.; Campa, F. Maturity Related Differences in Body Composition Assessed by Classic and Specific Bioimpedance Vector Analysis among Male Elite Youth Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 729. [CrossRef]
- Di Credico, A.; Gaggi, G.; Ghinassi, B.; Mascherini, G.; Petri, C.; Di Giminiani, R.; Di Baldassarre, A.; Izzicupo, P. The Influence of Maturity Status on Anthropometric Profile and Body Composition of Youth Goalkeepers. Int J Environ Res Public Health 2020 17, 8247. [CrossRef]
- Malina, R.M.; Geithner, C.A. Body Composition of YoungAthletes. American Journal of LifestyleMedicine, 2011, 5, 262–278. [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194.
- Steward, A.; Marfell-Jones, M. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2014.
- Aandstad, A.; Holtberget, K.; Hageberg, R.; Holme, I.; Anderssen, S.A. Validity and reliability of bioelectrical impedance analysis and skinfold thickness in predicting body fat in military personnel. Mil. Med. 2014, 179, 208–217. [CrossRef]
- Vasold, K.L.; Parks, A.C.; Phelan, D.M.L.; Pontifex, M.B.; Pivarnik, J.M. Reliability and validity of commercially available low-cost bioelectrical impedance analysis. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 406–410. [CrossRef]
- Cumming, S.P.; Sherar, L.B.; Esliger, D.W.; Riddoch, C.J.; Malina, R.M. Concurrent and prospective associations among biological maturation, and physical activity at 11 and 13 years of age. Scandinavian journal of medicine & science in sports. 2014, 24, e20–e8. [CrossRef]
- Malina, R.M.; Morano, P.J.; Barron, M.; Miller, S. J.; Cumming, S.P. Growth status and estimated growth rate of youth football players: A community-based study. Clinical Journal of Sport Medicine 2005, 15, 125-132. doi: 10.1097/01.jsm.0000164287.42066.63.
- Smart, J.E.; Cumming, S.P.; Sherar, L.B.; Standage, M.; Neville, H.; Malina, R.M. Maturity associated variance in physical activity and health-related quality of life in adolescent females: a mediated effects model. J Phys Act Health 2012, 9, 86-95. doi: 10.1123/jpah.9.1.86.
- Ruf, L.; Cumming, S.P.; Härtel, S.; Hecksteden, A.; Drust, B.; Meyer, T. Construct validity of age at predicted adult height and BAUS skeletal age to assess biological maturity in academy soccer. Ann Hum Biol. 2021, 48, 101-109. [CrossRef]
- Khamis, H.J.; Roche, A.F. Predicting adult stature without using skeletal age: the Khamis-Roche method. Pediatrics 1994, 94, 504–507.
- Cumming, S.P.; Battista, R.A.; Standage, M.; Ewing, M.E.; Malina, R.M. Estimated maturity status and perceptions of adult autonomy support in youth soccer players. Journal of Sports Sciences 2006, 24, 1039-1046. [CrossRef]
- Parr, J.; Winwood, K.; Hodson-Tole, E.; Deconinck,F.J.A.; Hill, J.P.; Teunissen, J.W.; Cumming, S.P. The Main and Interactive Effects of Biological Maturity and Relative Age on Physical Performance in Elite Youth Soccer Players. Journal of Sports Medicine 2020, 2020, 11 pages. doi: 10.1155/2020/1957636.
- Epstein, L.; Valoski, A.M.; Kalarchian, M.A.; McCurley, J. Do children lose and maintain weight easier than adults? A comparison of child and parent weight changes from six months to ten years. Obesity Research 1995, 3, 411-417. [CrossRef]
- Abbott, W.; Williams, S.; Brickley, G.; Smeeton, N.J. Effects of bio-banding upon physical and technical performance during soccer competition: a preliminary analysis. Sports 2019, 7, 193. [CrossRef]
- Bradley, B.; Johnson, D.; Hill, M.; McGee, D.; Kana-Ah, A.; Sharpin, C.; Sharp, P.; Kelly, A.; Cumming, S.P.; Malina, R.M. Bio-banding in academy football: player’s perceptions of a maturity matched tournament. Annals of Human Biology 2019, 46, 400-408. [CrossRef]
- Arede, J.; Cumming, S.; Johnson, D.; Leite, N. The effects of maturity matched and un-matched opposition on physical performance and spatial exploration behavior during youth basketball matches. PLoS One 2021, 8, e0249739. [CrossRef]
- Monasterio, X.; Gil, S.M; Bidaurrazaga-Letona, I.; Lekue, J.A.; Santisteban, J.; Diaz-Beitia, G.; Martin-Garetxana, I.; Bikandi, E.; Larruskain.; J. Injuries according to the percentage of adult height in an elite soccer academy. J Sci Med Sport. 2021, 24, 218-223. [CrossRef]
- Teixeira, J.E.; Alves, A.R.; Ferraz, R.; Forte, P.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Effects of Chronological Age, Relative Age, and Maturation Status on Accumulated Training Load and Perceived Exertion in Young Sub-Elite Football Players. Front Physiol. 2022, 13. [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: New Jersey, NJ, USA, 1988.
- Matthys, S.P.; Vaeyens, R.; Coelho-E-Silva, M.J.; Lenoir, M.; Philippaerts, R. The contribution of growth and maturation in the functional capacity and skill performance of male adolescent handball players. Int J Sports Med. 2012, 33, 543-549. [CrossRef]
- Bartke, A. Growth hormone and aging. Rev Endocr Metab Disord. 2021, 22, 71-80. [CrossRef]
- Gill, M.S.; Tillmann, V.; Veldhuis, J.D.; Clayton, P.E. Patterns of GH output and their synchrony with short-term height increments influence stature and growth performance in normal children. J Clin Endocrinol Metab. 2001, 86, 5860-3. doi: 10.1210/jcem.86.12.8116.
- Siervogel, R.M.; Maynard, L.M.; Wisemandle, W.A.; Roche, A.F.; Guo, S.S.; Chumlea, W.C.; Towne, B. Annual changes in total body fat (TBF) and fat free mass (FFM) in children from 8 to 18 years in relation to changes in body mass index (BMI). The Fels Longitudinal Study. Ann. N. Y. Acad. Sci. 2000, 904, 420–423. [CrossRef]
- Perroni, F.; Vetrano, M.; Rainoldi, A.; Guidetti, L.; Baldari, C. Relationship among explosive power, body fat, fat free mass and pubertal development in youth soccer players: A preliminary study. Sport Sciences for Health 2014, 10, 67–73. doi: org/10.1007/s11332-014- 0175-z.
- Utczás, K.; Tróznai, Z.; Pálinkás, G.; Kalabiska, I.; Petridis, L. How Length Sizes Affect Body Composition Estimation in Adolescent Athletes Using Bioelectrical Impedance. J Sports Sci Med. 2020, 19, 577-584.
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; González-Gálvez, N.; Esparza-Ros, F. Relationship between Biological Maturation, Physical Fitness, and Kinanthropometric Variables of Young Athletes: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2021, 18, 328. [CrossRef]
- Malina, R.M.; Dompier, T.P.; Powell, J.W.; Barron, M.J.; Moore, M.T. Validation of a noninvasive maturity estimate relative to skeletal age in youth football players. Clin J Sport Med. 2007, 17, 362-8. [CrossRef]
- Mandorino, M.; Figueiredo, A.J.; Condello, G.; Tessitore, A. The influence of maturity on recovery and perceived exertion, and its relationship with illnesses and non-contact injuries in young soccer players. Biol Sport. 2022, 39, 839-848. [CrossRef]
- Wik, E.H.; Martínez-Silván, D.; Farooq, A.; Cardinale, M.; Johnson, A.; Bahr, R. Skeletal maturation and growth rates are related to bone and growth plate injuries in adolescent athletics. Scand J Med Sci Sports 2020, 30, 894-903. [CrossRef]
- Rommers, N.; Rössler, R.; Goossens, L.; Vaeyens, R.; Lenoir, M.; Witvrouw, E.; D’Hondt, E. Risk of acute and overuse injuries in youth elite soccer players: Body size and growth matter. J Sci Med Sport. 2020, 23, 246-251. [CrossRef]
- Rejeb, A.; Johnson, A.; Farooq A; Verrelst, R.; Pullinger, S.; Vaeyens, R.; Witvrouw, E. Sports injuries aligned to predicted mature height in highly trained Middle-Eastern youth athletes: a cohort study. BMJ Open. 2019, 9, e023284. [CrossRef]
- Bult, H.J.; Barendrecht, M.; Tak, I.J.R. Injury Risk and Injury Burden Are Related to Age Group and Peak Height Velocity Among Talented Male Youth Soccer Players. Orthop J Sports Med. 2018, 6. [CrossRef]
- Radnor, J.M.; Staines, J.; Bevan, J.; Cumming, S.P.; Kelly, A.L.; Lloyd, R.S.; Oliver, J.L. Maturity Has a Greater Association than Relative Age with Physical Performance in English Male Academy Soccer Players. Sports 2021, 9, 171. doi: 10.3390/sports9120171.
- Arede, J.; Ferreira, A.P.; Gonzalo-Skok, O.; Leite, N. Maturational Development as a Key Aspect in Physiological Performance and National-Team Selection in Elite Male Basketball Players. Int J Sports Physiol Perform. 2019, 14, 902-910. [CrossRef]
- Rumpf, M.C.; Cronin, J.B.; Oliver, J.; Hughes, M. Kinematics and Kinetics of Maximum Running Speed in Youth Across Maturity. Pediatr Exerc Sci. 2015, 27, 277-84. [CrossRef]
- McBurnie, A.J.; Dos’Santos, T.; Johnson, D.; Leng, E. Training Management of the Elite Adolescent Soccer Player throughout Maturation. Sport 2021, 9, 170. Erratum in: Sports 2022, 10. doi: 10.3390/sports9120170. [CrossRef]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; Duffield, R.; Larson-Meyer, E.; Louis, J.; Medina, D.; Meyer, F.; Rollo, I.; Sundgot-Borgen, J.; Wall, B.T.; Boullosa, B.; Dupont, G.; Lizarraga, A.; Res, P.; Bizzini, M.; Castagna, C.; Cowie, C.M.; D’Hooghe, M.; Geyer, H.; Meyer, T.; Papadimitriou, N.; Vouillamoz, M.; McCall, A. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br J Sports Med. 2021, 55, 416. [CrossRef]
| Variables | ALL (n=320) | U15 (n=163) | U14 (n=157) |
|---|---|---|---|
| Pre-PHV | 32 (10.0%) | 2 (1.2%) | 30 (19.1%) |
| Circa-PHV | 244 (76.3%) | 119 (73.0%) | 125 (79.6%) |
| Post-PHV | 44 (13.8%) | 42 (25.8%) | 2 (1.3%) |
| ALL (n=320) |
pre-PHV (n=32) |
circa-PHV (n=215) |
post-PHV (n=73) |
|
|---|---|---|---|---|
| Variables | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) |
| Age (years) | 13.82 (0.57) | 13.17 (0.30) | 13.74 (0.52) | 13.82 (0.57) |
| %PAH (%) | 91.72 (3.21) | 86.09 (0.93) | 91.14 (1.99) | 95.88 (0.96) |
| Height (cm) | 167.70 (9.54) | 153.32 (4.74) | 166.60 (7.56) | 177.23 (6.00) |
| Weight (kg) | 53.29 (9.71) | 40.42 (3.86) | 51.85 (7.63) | 63.18 (7.72) |
| BMI (Kg/ m2) | 18.79 (1.88) | 17.18 (1.26) | 18.59 (1.68) | 20.08 (1.92) |
| TBW (l) | 35.03 (6.61) | 26.12 (2.45) | 33.98 (5.22) | 42.00 (4.73) |
| BFM (kg) | 9.45 (1.80) | 7.03 (0.65) | 9.17 (1.43) | 11.36 (1.28) |
| %BF (%) | 10.51 (3.53) | 11.91 (4.05) | 10.74 (3.49) | 9.25 (3.05) |
| FFM (kg) | 47.72 (9.04) | 35.55 (3.30) | 46.30 (7.14) | 57.24 (6.47) |
| SMM (kg) | 26.51 (5.45) | 19.21 (1.97) | 25.64 (4.30) | 32.27 (3.91) |
| FFMRA (kg) | 2.37 (0.65) | 1.55 (0.26) | 2.27 (0.52) | 3.05 (0.49) |
| FFMLA (kg) | 2.35 (0.65) | 1.54 (0.23) | 2.24 (0.51) | 3.04 (0.49) |
| FFMRL (kg) | 7.74 (1.71) | 5.37 (0.63) | 7.45 (1.35) | 9.55 (1.16) |
| FFMLL (kg) | 7.68 (1.69) | 5.32 (0.60) | 7.42 (1.34) | 9.47 (1.13) |
| FFMT (kg) | 20.38 (3.99) | 15.09 (1.52) | 19.72 (3.15) | 24.62 (2.84) |
| Variables | F value | Anova | Effect size | Bonferonni post hoc test | ||
|---|---|---|---|---|---|---|
| F | p | η2 | pre-PHV – circa-PHV |
circa-PHV- post-PHV |
pre-PHV – post-PHV |
|
| Age (years) | 77.601 | <0.001 | 0.329 (large) | <0.001 | <0.001 | <0.001 |
| %PAH (%) | 394.183 | <0.001 | 0.713 (large) | <0.001 | <0.001 | <0.001 |
| Height (cm) | 138.056 | <0.001 | 0.466 (large) | <0.001 | <0.001 | <0.001 |
| Weight (kg) | 118.743 | <0.001 | 0.428 (large) | <0.001 | <0.001 | <0.001 |
| BMI (Kg/ m2) | 36.578 | <0.001 | 0.188 (large) | <0.001 | <0.001 | <0.001 |
| TBW (l) | 131.383 | <0.001 | 0.453 (large) | <0.001 | <0.001 | <0.001 |
| BFM (kg) | 2.998 | 0.051 | 0.019 (small) | 0.247 | 0.508 | 0.046 |
| %BF (%) | 7.925 | <0.001 | 0.048 (small) | 0.223 | 0.005 | 0.001 |
| FFM (kg) | 131.134 | <0.001 | 0.453 (large) | <0.001 | <0.001 | <0.001 |
| SMM (kg) | 131.537 | <0.001 | 0.454 (large) | <0.001 | <0.001 | <0.001 |
| FFMRA (kg) | 119.185 | <0.001 | 0.429 (large) | <0.001 | <0.001 | <0.001 |
| FFMLA (kg) | 124.524 | <0.001 | 0.440 (large) | <0.001 | <0.001 | <0.001 |
| FFMRL (kg) | 137.366 | <0.001 | 0.464 (large) | <0.001 | <0.001 | <0.001 |
| FFMLL (kg) | 139.344 | <0.001 | 0.468 (large) | <0.001 | <0.001 | <0.001 |
| FFMT (kg) | 131.611 | <0.001 | 0.454 (large) | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
