Submitted:
22 July 2024
Posted:
23 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Training Intensities in Sports
1.2. Soccer Training Tasks
1.3. Maturation Age in Young Players
1.4. Objective and Hypothesis of the Study
2. Materials and Methods
2.1. Study Design
2.2. Population, Participants and Sample
2.3. Variables and Instruments
2.4. Procedure
2.5. Statistical Analysis
3. Results
3.1. Descrptive Results of Anthropometric Data and Training Intensities Variables
3.2. Comparison of Intensities Variables According to Task Type
3.3. Impact of Maturation Age on Differences between Study Contexts
4. Discussion
4.1. Intensties Variables According to Task Type
4.2. Maturation Age on Differences between Study Contexts
4.3. Limitations, Strengths and Research Prospective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Myer, G.D.; De Ste Croix, M.B. Chronological age vs. biological maturation: Implications for exercise programming in youth. Journal of Strength and Conditioning Research 2014, 28, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.; Midgley, A.W.; Towlson, C.; Garrett, A.; Portas, M.; Lovell, R. Within-match PlayerLoad™ patterns during a simulated soccer match: Potential implications for unit positioning and fatigue management. International Journal of Sports Physiology and Performance 2016, 11, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Staunton, C.A.; Abt, G.; Weaving, D.; Wundersitz, D.W.T. Misuse of the term ’load’ in sport and exercise science. Journal of Science and Medicine in Sport 2022, 25, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I. The Alphabet of Sport Science Research Starts With Q. International Journal of Sports Physiology and Performance 2013, 8, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Reche-Soto, P.; Cardona, D.; Díaz, A.; Gómez-Carmona, C.D.; Pino-Ortega, J. ACELT y PLAYER LOAD: Dos Variables para la Cuantificación de la Carga Neuromuscular/ACELT and PLAYER LOAD: Two Variables to Quanty Neuromuscular Load. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte 2020, 20, 167–183. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; Ibáñez, S.J.; Pino-Ortega, J. Accelerometry as a method for external workload monitoring in invasion team sports. A systematic review. PLoS ONE 2020, 15, e0236643. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, S.J.; Feu, S.; Cañadas, M. Sistema integral para el análisis de las tareas de entrenamiento, SIATE, en deportes de invasión. E-balonamo Com 2016, 12, 3–30. [Google Scholar]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology 2014, 5, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Borgʹs Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the black box: applications and considerations for using GPS devices in sport. International Journal of Sports Physiology Performance 2017, 12, S2-18–S12-26. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, S.J.; Gómez-Carmona, C.D.; Mancha-Triguero, D. Individualization of intensity thresholds on external workload demands in women’s basketball by k-means clustering: Differences based on the competitive level. Sensors 2022, 22, 324. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Vargas, R.; Ugalde-Ramírez, J.A.; Rojas-Valverde, D.; Müller-Thyssen, M.; Pino-Ortega, J. External and internal load of Costa Rican handball referees according to sex and game periods. E-balonmano Com 2021, 17, 153–162. [Google Scholar] [CrossRef]
- Feu, S.; García-Ceberino, J.M.; López-Sierra, P.; Ibáñez, S.J. Training to Compete: Are Basketball Training Loads Similar to Competition Achieved? Applied Sciences 2023, 13, 12512. [Google Scholar] [CrossRef]
- Fernández, D.; Cadefau, J.A.; Serra, N.; Carmona, G. The distribution of different intensity demanding scenarios in elite rink hockey players using an electronic performance tracking system. PLos ONE 2023, 18, e0282788. [Google Scholar] [CrossRef] [PubMed]
- García-Ceberino, J.M.; Bravo, A.; de la Cruz-Sánchez, E.; Feu, S. Analysis of Intensities Using Inertial Motion Devices in Female Soccer: Do You Train like You Compete? Sensors 2022, 22, 2870. [Google Scholar] [CrossRef] [PubMed]
- Majano, C.; Garcia-Unanue, J.; Fernández-Cuevas, I.; Escamilla-Galindo, V.; Alonso-Callejo, A.; Sanchez-Sanchez, J.; Gallardo, L.; Felipe, J.L. Association between physical demands, skin temperature and wellbeing status in elite football players. Scientific Reports 2023, 13, 13780. [Google Scholar] [CrossRef] [PubMed]
- Gantois, P.; Piqueras-Sanchiz, F.; Cid, M.J.F.A.; Pino-Ortega, J.; Castillo, D.; Nakamura, F.Y. The effects of different small-sided games configurations on heart rate, rating of perceived exertion, and running demands in professional soccer players. European Journal of Sport Science 2023, 23, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Lozano, J.M.; Cuenca-López, J.; Suárez, J.; Granero-Gil, P.; Muyor, J.M. When and How Do Soccer Players From a Semi-Professional Club Sprint in Match Play? Journal of Human Kinetics 2023, 86, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Reche-Soto, P.; Cardona-Nieto, D.; Díaz-Suárez, A.; Gómez-Carmona, C.D.; Pino-Ortega, J. Analysis of physical demands of small-sided games in semiproffesional-level football in function of the objective and the tracking technology utilised E-balonmano Com 2019, 15, 23–36. 15.
- Bujalance-Moreno, P.; Latorre-Román, P.Á.; Ramírez-Campillo, R.; Garcia-Pinillos, F. Acute responses to 4 vs. 4 small-sided games in football players. Kinesiology 2020, 52, 46–53. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; Gamonales, J.M.; Pino-Ortega, J.; Ibáñez, S.J. Comparative Analysis of Load Profile between Small-Sided Games and Official Matches in Youth Soccer Players. Sports 2018, 6, 173. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.; Nakamura, F.Y.; Casamichana, D.; Barba, E.; Castellano, J.; Marcelino, R. Match peak speeds, maximum accelerations, and maximum decelerations differ in young football players: expression of maximal capacities is dependent of match context. Sport Sciences for Health 2023, 20, 1–6. [Google Scholar] [CrossRef]
- Machado, J.C.; Góes, A.; Aquino, R.; Bedo, B.L.S.; Viana, R.; Rossato, M.; Scaglia, A.; Ibáñez, S.J. Applying different strategies of task constraint manipulation in small-sided and conditioned games: How do they impact physical and tactical demands? Sensors 2022, 22, 4435. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.M.; Castillo, D.; Los Arcos, A. Tactical analysis according to age-level groups during a 4 vs. 4 plus goalkeepers small-sided game. International Journal of Environmental Research Public Health 2020, 17, 1667. [Google Scholar] [CrossRef]
- Inglés-Bolumar, P.; Pino-Ortega, J.; Bastida-Castillo, A.; Gómez-Carmona, C.D. Análisis cinemático de las exigencias en futbolistas de categoría benjamín mediante un dispositivo inercial (WIMU PROTM). Kronos 2018, 17. [Google Scholar]
- McMillan, K.; Helgerud, J.; Macdonald, R.; Hoff, J. Physiological adaptations to soccer specific endurance training in professional youth soccer players. British Journal of Sports Medicine 2005, 39, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Reilly, T.; Williams, A.M. Science and football III; Routledge, UK: 2014. [CrossRef]
- Zanetti, V.; Aoki, M.S.; Bradley, P.S.; Moreira, A. External and internal training loads for intensive and extensive tactical-conditioning in soccer small sided games. Journal of Human Kinetics 2022, 83, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Mohr, M.; Krustrup, P. Physical and metabolic demands of training and match-play in the elite football player. Journal of Sports Sciences 2006, 24, 665–674. [Google Scholar] [CrossRef]
- Monasterio, X.; Bidaurrazaga-Letona, I.; Larruskain, J.; Lekue, J.A.; Diaz-Beitia, G.; Santisteban, J.M.; Martin-Garetxana, I.; Gil, S.M. Relative skeletal maturity status affects injury burden in U14 elite academy football players. Scandinavian Journal of Medicine & Science in Sports 2022, 32, 1400–1409. [Google Scholar] [CrossRef]
- Towlson, C.; Salter, J.; Ade, J.D.; Enright, K.; Harper, L.D.; Page, R.M.; Malone, J.J. Maturity-associated considerations for training load, injury risk, and physical performance in youth soccer: One size does not fit all. Journal of Sport and Health Science 2021, 10, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Philippaerts, R.M.; Vaeyens, R.; Janssens, M.; Renterghem, B., V.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.; Malina, R.M. The relationship between peak height velocity and physical performance in youth soccer players. Journal of Sports Sciences 2006, 24, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Bult, H.J.; Barendrecht, M.; Tak, I.J.R. Injury Risk and Injury Burden Are Related to Age Group and Peak Height Velocity Among Talented Male Youth Soccer Players. Orthopaedic Journal of Sports Medicine 2018, 6, 2325967118811042. [Google Scholar] [CrossRef] [PubMed]
- Dupré, T.; Potthast, W. Groin injury risk of pubertal soccer players increases during peak height velocity due to changes in movement techniques. Journal of Sports Sciences 2020, 38, 2661–2669. [Google Scholar] [CrossRef] [PubMed]
- Ato, M.; López, J.J.; Benavente, A. Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología 2013, 29, 1039–1059. [Google Scholar] [CrossRef]
- Lago, C.; Lorenzo-Calvo, A.; Cárdenas, D.; Alarcón, F.; Ureña, A.; Giménez, F.J.; Gómez-Ruano, M.Á.; Fradua, L.; Sáinz de Baranda, P.; Ibáñez, S.J. , et al. La creación de conocimiento en los deportes de equipo. Sobre el tamaño de la muestra y la generalización de los resultados. Journal of Universal Movement and Performance 2020, 1, 7–8. [Google Scholar] [CrossRef]
- Bastida-Castillo, A.; Gómez-Carmona, C.D.; De la cruz Sánchez, E.; Pino-Ortega, J. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer. European Journal of Sport Science 2018, 18, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A. Kinanthropometry - the interdisciplinary discipline. Journal of Sports Sciences 2007, 25, 373. [Google Scholar] [CrossRef] [PubMed]
- Fransen, J.; Bush, S.; Woodcock, S.; Novak, A.; Deprez, D.; Baxter-Jones, A.D.G.; Vaeyens, R.; Lenoir, M. Improving the Prediction of Maturity From Anthropometric Variables Using a Maturity Ratio. Pediatric Exercise Science 2018, 30, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Carmona, C.D.; Pino-Ortega, J.; Ibáñez-Godoy, S.J. Design and validity of a field test battery for assessing multi-location external load profile in invasion team sports. E-balonamo Com 2020, 16, 23–48. [Google Scholar]
- Hodgson, C.; Akenhead, R.; Thomas, K. Time-motion analysis of acceleration demands of 4v4 small-sided soccer games played on different pitch sizes. Human Movement Science 2014, 33, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Brito, Â.; Roriz, P.; Duarte, R.; Garganta, J. Match-running performance of young soccer players in different game formats. International Journal of Performance Analysis in Sport 2018, 18, 410–422. [Google Scholar] [CrossRef]
- Owen, A.L.; Wong, D.P.; Paul, D.; Dellal, A. Physical and Technical Comparisons between Various-Sided Games within Professional Soccer. International Journal of Sports Medicine 2014, 35, 28–92. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.M.; Sarmento, H.; Rabbani, A.; Van der Linden, C.M.I.; Kargarfard, M.; Costa, I.T. Variations of external load variables between medium- and large-sided soccer games in professional players. Research in Sports Medicine 2019, 27, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Rábano-Munoz, A.; Suárez-Arrones, L.; Requena, B.; Asian-Clemente, J. Relative Match Load in Young Professional Soccer Players during Soccer-7 and Soccer-11. International Journal of Sports Medicine 2024, 45, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Asci, A. Heart Rate Responses during Small Sided Games and Official Match-Play in Soccer. Sports 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Eskandarifard, E.; Nobari, H.; Sogut, M.; Clemente, F.M.; Figueiredo, A.J. Exploring interactions between maturity status and playing time with fluctuations in physical fitness and hormonal markers in youth soccer players. Scientific Reports 2022, 12, 4463. [Google Scholar] [CrossRef] [PubMed]
- Lovell, R.; Fransen, J.; Ryan, R.; Massard, T.; Cross, R.; Eggers, T.; Duffield, R. Biological maturation and match running performance: A national football (soccer) federation perspective. Journal of Science and Medicine in Sport 2019, 22, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Cumming, S.P.; Searle, C.; Hemsley, J.K.; Haswell, F.; Edwards, H.; Scott, S. .; Malina, R.M. Biological maturation, relative age and self-regulation in male professional academy soccer players: A test of the underdog hypothesis. Psychology of Sport and Exercise 2018, 39, 147–153. [Google Scholar] [CrossRef]
- Asadi, A.; Arazi, H.; Ramirez-Campillo, R.; Moran, J.; Izquierdo, M. Influence of Maturation Stage on Agility Performance Gains After Plyometric Training: A Systematic Review and Meta-analysis. Journal of Strength and Conditioning Research 2017, 31, 2609–2617. [Google Scholar] [CrossRef] [PubMed]
- Lesinski, M.; Schmelcher, A.; Herz, M.; Puta, C.; Gabriel, H.; Arampatzis, A.; Laube, G.; Büsch, D.; Granacher, U. Maturation-, age-, and sex-specific anthropometric and physical fitness percentiles of German elite young athletes. PLoS ONE 2020, 15, e0237423. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.E.; Alves, A.R.; Ferraz, R.; Forte, P.; Leal, M.; Ribeiro, J. .; Monteiro, A.M. Effects of chronological age, relative age, and maturation status on accumulated training load and perceived exertion in young sub-elite football players. Frontiers in Physiology 2022, 13, 832202. [Google Scholar] [CrossRef] [PubMed]
- Salter, J.; Julian, R.; Mentzel, S.V.; Hamilton, A.; Hughes, J.D.; De St Croix, M. Maturity status influences perceived training load and neuromuscular performance during an academy soccer season. Research in Sports Medicine 2024, 32, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Nobari, H.; Eken, Ö.; Singh, U.; Gorouhi, A.; Bordón, J.C.P.; Prieto-González, P. .; Calvo, T.G. Which training load indicators are greater correlated with maturation and wellness variables in elite U14 soccer players? BMC Pediatrics, 2024, 24, 289. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Eisenmann, J.C.; Cumming, S.P.; Ribeiro, B.; Aroso, J. Maturity-associated variation in the growth and functional capacities of youth football (soccer) players 13-15 years. European Journal of Applied Physiology 2004, 91, 555–562. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A.; Simpson, B.M.; Bourdon, P.C. Match running performance and fitness in youth soccer. International Journal of Sports Medicine 2010, 31, 818–825. [Google Scholar] [CrossRef]
- Parr, J.; Winwood, K.; Hodson-Tole, E.; Deconinck, F.J.; Hill, J.P.; Teunissen, J.W.; Cumming, S.P. The main and interactive effects of biological maturity and relative age on physical performance in elite youth soccer players. Journal of Sports Medicine and Physical Fitness 2020, 2020, 1957636. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Faigenbaum, A.D.; Stone, M.H.; Oliver, J.L.; Jeffreys, I.; Moody, J.A.; Brewer, C.; Pierce, K.C.; McCambridge, T.M.; Howard, R. , et al. Position statement on youth resistance training: The 2014 International Consensus. British Journal of Sports Medicine 2014, 48, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Sandercock, G.R.; Ramírez-Campillo, R.; Meylan, C.; Collison, J.; Parry, D.A. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. Journal of Sports Sciences 2017, 35, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; Coelho e Silva, M.J.; Figueiredo, A.J. Biological maturation of youth athletes: Assessment and implications. British Journal of Sports Medicine 2015, 49, 852–859. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A. Reliability and stability of anthropometric and performance measures in highly-trained young soccer players: Effect of age and maturation. Journal of Sports Sciences 2013, 31, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
| Intensity type | Variable | Abbreviation | Description |
|---|---|---|---|
| Kinematic eTL | Distance | Dist m/min | Distance covered in meter per minute |
| High-intensity actions in relative and absolute values | % HIA Rel % HIA Abs |
It is the sum of the following variables: take-off (>3G), landings (>5G), impacts (>8G), accelerations (>3 m/s2), decelerations (<-3 m/s2), relative sprints (>95% max speed), and relative HSR (>75.5% max speed) | |
| Sprints in relative and absolute values | Sprints Rel | It is a displacement > 21 km/h | |
| Sprints Abs | |||
| Maximum speed | Speed Max km/h | Maximum and average speed determined in kilometers per hour (km/h) | |
| Average speed | Speed Avg km/h | ||
| Accelerations | Acc + 2/min | Average accelerations exceeding 2 m/s2, per minute | |
| Decelerations | Dec + 2/min | Average decelerations below -2 m/s2, per minute | |
| Neuromuscular eTL | Player Load | PL/min | Vector magnitude derived from triaxial accelerometry data |
| iTL | Maximum heart rate | HR Max /min | It is established using the arithmetic mean of beats per minute |
| Average heart rate | HR Avg /min | It is established using the arithmetic maximum of beats per minute |
| Category | Variable | Total | Training Match | SSGs | Analytical Task |
|---|---|---|---|---|---|
|
Anthropometric Data M ± SD |
Chronological Age | 15.54 ± 0.53 | |||
| Maturation Age | 14.36 ± 0.44 | ||||
| Offset | 1.17 ± 0.61 | ||||
| Weight | 62.83 ± 8.06 | ||||
| Height | 171.63 ± 6.12 | ||||
| Sitting Height | 87.55 ± 3.70 | ||||
|
Intensity type Mdn (IQR) |
|||||
| Kinematic eTL | Dist m/min | 77.35 (14.61) | 83.09 (14.71) | 68.80 (15.49) | 80.10 (20.61) |
| % HIA Rel | 2.50 (7.44) | 3.17 (9.94) | 5.50 (4.25) | 0.00 (0.00) | |
| % HIA Abs | 1.00 (6.38) | 1.29 (8.94) | 2.48 (5.17) | 0.00 (0.00) | |
| Sprints Rel | 0.00 (0.00) | 0.00 (1.00) | 0.20 (0.50) | 0.00 (0.00) | |
| Sprints Abs | 0.00 (0.00) | 0.00 (1.00) | 0.00 (1.00) | 0.00 (0.00) | |
| Speed Max km/h | 16.62 (5.17) | 22.98 (4.81) | 21.82 (4.35) | 15.68 (2.54) | |
| Speed Avg km/h | 5.89 (0.94) | 5.97 (1.12) | 5.33 (1.20) | 5.59 (0.84) | |
| Acc + 2/min | 31.00 (5.33) | 31.44 (5.08) | 33.45 (3.37) | 31.58 (6.42) | |
| Dec + 2/min | 31.00 (5.34) | 31.50 (4.95) | 33.14 (4.05) | 31.32 (6.34) | |
| Neuromuscular eTL | PL/min | 1.17 (0.35) | 1.17 (0.30) | 1.08 (0.34) | 1.17 (0.38) |
| iTL | HR Max /min | 164.00 (26.00) | 186.00 (13.50) | 180.00 (17.50) | 164.00 (18.38) |
| HR Avg /min | 145.00 (29.00) | 157.00 (14.00) | 153.31 (20.04) | 145.00 (22.96) | |
| Variable | Q | ES | Comparison | Z | ρ |
|---|---|---|---|---|---|
| Dist m/min | 26.22**** | 0.24 | 1 vs. 2 | 5.74**** | -0.06ns |
| 1 vs. 3 | 3.68**** | -0.26ns | |||
| 2 vs. 3 | 2.06* | -0.19ns | |||
| % HIA Rel | 43.07**** | 0.39 | 1 vs. 2 | 0.91ns | 0.32* |
| 1 vs. 3 | 7.63**** | 0.33* | |||
| 2 vs. 3 | 6.72**** | 0.01ns | |||
| % HIA Abs | 41.89**** | 0.38 | 1 vs. 2 | 0.41ns | 0.32* |
| 1 vs. 3 | 6.84**** | 0.32* | |||
| 2 vs. 3 | 7.26**** | -0.02ns | |||
| Sprints Rel | 28.35**** | 0.26 | 1 vs. 2 | 1.49ns | 0.09ns |
| 1 vs. 3 | 4.40**** | 0.10ns | |||
| 2 vs. 3 | 5.89**** | 0.06ns | |||
| Sprints Abs | 28.77**** | 0.27 | 1 vs. 2 | 0.40ns | 0.16ns |
| 1 vs. 3 | 5.15**** | 0.06ns | |||
| 2 vs. 3 | 5.54**** | -0.08ns | |||
| Speed Max (km/h) | 60.65**** | 0.55 | 1 vs. 2 | 2.54* | 0.25ns |
| 1 vs. 3 | 11.00**** | 0.15ns | |||
| 2 vs. 3 | 8.46**** | -0.07ns | |||
| Speed Avg (km/h) | 24.04**** | 0.22 | 1 vs. 2 | 4.06**** | 0.15ns |
| 1 vs. 3 | 5.24**** | 0.11ns | |||
| 2 vs. 3 | 1.18ns | -0.03ns | |||
| Acc +2/min | 5.05ns | 0.05 | 1 vs. 2 | 1.55ns | 0.30* |
| 1 vs. 3 | 0.68ns | 0.12ns | |||
| 2 vs. 3 | 2.23ns | -0.06ns | |||
| Dec +2/min | 6.87* | 0.06 | 1 vs. 2 | 1.76ns | 0.32* |
| 1 vs. 3 | 0.88ns | 0.11ns | |||
| 2 vs. 3 | 2.63ns | -0.04ns | |||
| PL/min | 6.76* | 0.06 | 1 vs. 2 | 2.45* | 0.05ns |
| 1 vs. 3 | 0.34ns | -0.28* | |||
| 2 vs. 3 | 2.11* | -0.24ns | |||
| HR Max/min | 51.92**** | 0.47 | 1 vs. 2 | 1.69ns | 0.12ns |
| 1 vs. 3 | 9.23**** | -0.15ns | |||
| 2 vs. 3 | 7.54**** | -0.19ns | |||
| HR Avg/min | 25.30**** | 0.23 | 1 vs. 2 | 2.60* | 0.08ns |
| 1 vs. 3 | 5.68**** | -0.17ns | |||
| 2 vs. 3 | 3.08*** | -0.25ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
