Submitted:
26 September 2023
Posted:
28 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis and Antioxidant Capacity
2.2. α-Amylase and α-Glucosidase Inhibition Activity
2.3. Lipoxygenase (LOX) and Hyaluronidase (HYA) Inhibition Activity
3. Materials and Methods
3.1. Chemicals
3.2. The Obtaining of Extracts
3.3. The Bioactive Compounds Determination
3.3.1. HPLC Analysis
3.4. Antioxidant Assays
- The method was based on decreasing the maximum absorbance of ABTS to 731 nm in the presence of the antioxidant [63]; antioxidant activity was expressed in TEAC equivalents (Trolox Equivalent Antioxidant Capacity) using the formula
- DPPH radical scavenging activity
- Reducing Power Activity (Iron (III) to iron (II) reduction)
3.5. Enzyme Inhibitory Activity Assay
3.5.1. Testing the Antidiabetic Capacity of the Extracts
- α Amylase inhibition assay
- α-Glucosidase inhibition assay
3.5.2. Testing the Anti-Inflammatory Capacity of the Extracts
- o Hyaluronidase inhibition assay
- o Lipoxygenase inhibition assay
4. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- IDF (International Diabetes Federation) IDF diabetes atlas, 8th edition, 2017 https://www.idf.org/e-library/epidemiology-research/diabetes-atlas.html.
- Ogurtsova, K.; Da Rocha Fernandes J.D; Huang, Y.; Linnenkamp, U.; Guariguata L.; Cho, N.H.; Makaroff, L.E. IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040, Diabetes Res. Clin. Pract. 2017, 128, pp. 40-50. [CrossRef]
- Vadivelan, R.; Gopala, Krishnan, R.; Kannan, R. Antidiabetic potential of Asparagus racemosus, Willd leaf extracts through inhibition of a-amylase and a-glucosidase. J. Trad. Complement Med. 2019, 9 1e4.
- Chester, K.; Zahiruddin, S.; Ahmad, A.; Khan, W.; Paliwal S., Ahmad S., Anti-inflammatory activity of total alkaloids from hypecoum leptocarpum hook f. et Thoms. Pharmacogn. Mag. 2017, 13, 179-188.
- Bribi, N;. Algieri, F; Rodriguez-Nogales, A., Garrido-Mesa, J.; Vezza, T.; Maiza, F.;. Utrilla, M.P; Rodriguez-Cabezas, M.E.; Galvez, J. Antinociceptive and anti-inflammatory effects of total alkaloid extract from fumaria capreolata. Evidence-based Complement Altern. Med. 2015, 1-7.
- Hermanto, F.E., Soewondo, A., Tsubo,i H., et al. The hepatoprotective effect of Cheral as anti-oxidant and anti-inflammation on mice (Mus musculus) with breast cancer, J. Herbmed. Pharmacol. 2020, 9, 153-160. [CrossRef]
- Girish, K.S.; Kemparaju, K.; Nagaraju, S.; Vishwanath, B.S. Hyaluronidase inhibitors: a biological and therapeutic perspective. Curr. Med. Chem. 2009, 16, 2261–2288. [CrossRef]
- Loncaric, M.; Strelec, I.; Moslavac, T.; Subaric, D.; Pavic, V.; Molnar, M. Lipoxygenase inhibition by plant extracts. Biomolecules. 2021, 11, p. 152. [CrossRef]
- González-Peña, D.; Colina-Coca, C.; Char, C.D.; Cano, M.P.; Ancos, B.; Sánchez-Moreno, C. Hyaluronidase inhibiting activity and radical scavenging potential of flavonols in processed onion. J. Agric. Food Chem. 2013, 61, 4862–4872. [CrossRef]
- Sarmiento-Salinas, F. L.; Perez-Gonzalez, A..; Acosta-Casique, A.; Ix-Ballote, A.; Diaz A.; Treviño S.; N.H. Rosas-Murrieta; Millán-Perez-Peña, L. M. Paola, Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression, Life Sciences, 2021, 284, 119942. [CrossRef]
- Ribeiro, D.; Freitas, M.; Toméb, Sara, M.; Silva, Artur, M.S.; Porto, Graça; Cabrita, E., J.; Marques, M., Manuel, B. Fernandes, E. .Inhibition of LOX by flavonoids: a structure activity relationship study. Eur. J. Med. Chem. 2014, 72137e145.
- Sudha, P.N.; Rose, M.H. Beneficial effects of hyaluronic acid. Adv. Food Nutr. Res., 2014, 72, 137-176. [CrossRef]
- Ölgen, S.; Kaessler, A.; Zühal, Kiliç-Kurt, Z; Jose, J. Investigation of aminomethyl indole derivatives as hyaluronidase inhibitors, Zeitschrift für Naturfors C. 2014, 65, 445-450. [CrossRef]
- Michalea, R.; Stathopoulou, K.; Panagiotisa, P.; Dimitrab, B.; Emmanuel, M. Efficient identification of Acetylcholinesterase and Hyaluronidase inhibitors from Paeonia parnassica extracts through a Hetero Covariance Approach, Aligiannis Nektariosa, J. Ethnopharmacol. 2020, 257, 111547.
- Bazinet, L.; Doyen, A. Antioxidants, mechanisms, and recovery by membrane processes Crit. Rev. Food Sc. Nutr. 2017, 57, 4, 677–700.
- Conidi, C.; Drioli, E.; Cassano, A. Membrane-based agro-food production processes for polyphenol separation, purification and concentration, Curr. Opin. Food Sci. 2018, 17, 149–164. [CrossRef]
- Gerke, I.B.; Hamerski, F.; Scheer, A.P.; Silva, V.R. Clarification of crude extract of yerba mate (Ilex paraguariensis) by membrane processes: analysis of fouling and loss of bioactive compounds. Food Bioprod. Process. 2017, 102, 204-212. [CrossRef]
- Dos Santos, L.F.; Vargas, B.K.; Bertol, C.D.; Biduski, B.; Bertolina, T.E.; Dos Santos L.R.; Brião, V.B. Clarification and concentration of yerba mate extract by membrane technology to increase shelf life. Food Bioprod. Process. 2020, 122, 22–30. [CrossRef]
- Pandey, A.K.; Singh P. The genus artemisia: a 2012–2017 literature review on chemical composition, antimicrobial, insecticidal and antioxidant activities of essential oils, Medicines. 2017, 4, p. 68. [CrossRef]
- Ekiert, H.; Pajor., J.; Klin , P.; Rzepiela, A.;. Ślesak, H., Szopa, A. Significance of Artemisia vulgaris L. (common Mugwort) in the history of medicine and its possible contemporary applications substantiated by phytochemical and pharmacological studies. Molecules. 25 2020, p. 4415.
- Taleghani, A.; Emami, S.A.; Tayarani-Najaran, Z. Artemisia: a promising plant for the treatment of cancer. Bioorg. Med. Chem. 2020, 28. [CrossRef]
- Ben, Nasr, S.; Aazza, S.; Mnif, W.; Miguel, M. In-vitro antioxidant and anti-inflamatory activities of Pituranthos chloranthus and Artemisia vulgaris from Tunisia. Int. J. Appl. Pharm. Sci. Res. 2020, 11, 605–614.
- Tao Liu, Xiangyu Chen, Yuze Hu, Menghe Li, Yanting Wu, Minghui Dai, ZhiLin Huang, Pinghua Sun, Junxia Zheng, Zhe Ren, Yifei Wang, Sesquiterpenoids and triterpenoids with anti-inflammatory effects from Artemisia vulgaris L, Phytochemistry, 204, 2022, 113428. [CrossRef]
- Ahamad, J.; Mir, S.R; Amin, S. A pharmacognostic review on Artemisia absinthium, Int. Res. J. Pharm. 2019, 10, 25-31. [CrossRef]
- Szopa, A.; Pajor, J.; Klin, P.; Rzepiela, A.; Elansary, H.O,; Al-Mana, F.A.; Mattar, M.A.; Ekiert, H. Artemisia absinthium L. - importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants, 2020, 9, pp. 1-33. [CrossRef]
- Al-Malki, A.L. Shikimic acid from Artemisia absinthium inhibits protein glycation in diabetic rats. Int. J. Biol. Macromol. 2019, 122, 1212-1216. [CrossRef]
- Srivastava, R.; Srivastava, P. Hepatotoxicity and the role of some herbal hepatoprotective plants in present scenario. GJ. Dig. Dis. 2018, 3, p. 2. [CrossRef]
- Singh, N.; Yadav, S. S.; Kumar, S.; Narashiman, B. Ethnopharmacological, phytochemical and clinical studies on Fenugreek (Trigonella foenum-graecum L.). Food Bioscience. 2022, 46, 101546. [CrossRef]
- Ruwali, P.; Pandey, N.; Jindal, K.; Singh, R.V. Fenugreek (Trigonella foenum-graecum): Nutraceutical values, phytochemical, ethnomedicinal and pharmacological overview, S. Afr. J. Bot. 2022, 151, 423-431. [CrossRef]
- Singh, P.; Bajpai, V.; Gond, V.; Kumar, A.; Tadigoppula, N.; Kumar, B. Determination of bioactive compounds of fenugreek (Trigonella foenum-graecum) seeds using LC-MS techniques. Methods Mol. Biol. 2020, 2107, 377-393.
- Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. Journal of Functional Foods. 2011, 3, 144–158. [CrossRef]
- Seasotiya, L.; Siwach, P.; Bai, S.; Malik, A.; Bharti, P., Dalal, S. Free radical scavenging activity, phenolic contents and phytochemical analysis of seeds of Trigonella foenum graecum, Asian Pac. J. of Health Sci. 2014, 1, 219-226.
- Mohammad, A. Light-induced fluctuations in biomass accumulation, secondary metabolites production and antioxidant activity in cell suspension cultures of Artemisia absinthium L. J. Photochem. Photobiol B: Biol. 2014, 140, 223-227.
- Nguyen, H.T.; Radacsi, P.; Gosztola, B.; Nemeth, E. Z. Effects of temperature and light intensity on morphological and phytochemical characters and antioxidant potential of wormwood (Artemisia absinthium L.). Biochem. Sys.Ecol. 2018, 79, 1-7. [CrossRef]
- Lee, Y.J.; Thiruvengadam, M.; Chung, I.M; Nagella, P. Polyphenol composition and antioxidant activity from the vegetable plant Artemisia absinthium L. Aust. J. Crop Sci., 2013, 7, 1921-1926.
- Ferreira, J.F.; Luthria, D.L.; Sasaki, T.; Heyerick, A. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules. 2010, 15, 3135-3170. [CrossRef]
- Casazza, A.A; Aliakbarian, B.; De Faveri, D.; Fiori, L.; Perego P. Antioxidants from winemaking wastes: a study on extraction parameters using response surface methodology. J. Food Biochem. 2012, 36, 28-37. [CrossRef]
- Aliakbarian, B.; Fathi,A.; Perego, P.; Dehghani, F. Extraction of antioxidants from winery wastes using subcritical water. J. Supercrit. Fluids. 2012, 65, 18-24. [CrossRef]
- Melguizo-Melguizo, D.; Diaz-de-Cerio, E.; Quirantes-Piné, R.; Švarc-Gajic´, J.; Segura-Carretero, A. The potential of Artemisia vulgaris leaves as a source of antioxidant phenolic compounds. J. func. foods. 2014, 10, 192–200.
- Haniya, A.K.;Padma, P. Phytochemical investigation of methanolic extract of Artemisia vulgaris L. leaves. IJPBS, 2014 , 5, 184-195.
- Orhan, E.I.; Belhattab, R.; Şenol, F. S.; Gülpinar, A.R; .Hoşbaş, S.; Kartal, M. Profiling of cholinesterase inhibitory and antioxidant activities of Artemisia absinthium, A. herba-alba, A. fragrans, Marrubium vulgare, M. astranicum, Origanum vulgare subsp. glandulossum and essential oil analysis of two Artemisia species. Ind. Crops Prod., 2010, 32, 566-571.
- Craciunescu, O.; Constantin, D.; Gaspar, A.; Toma, L.; Utoiu, E.; Moldovan, L. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts. Chem. Cent. J. 2012, 6. [CrossRef]
- Magalingam, K.B.; Radhakrishnan, A.K.; Haleagrahara, N. Protective mechanisms of flavonoids in Parkinson’s disease. Oxid. Med. Cell. Longev. 2015, Article 314560. [CrossRef]
- Bondonno, N.P.; Dalgaard, F.; Kyrø , C.; Murray, K.; Bondonno, C.P. ; Lewis, J.R.; Croft, K.D.; Gislason, G.; Scalbert, A.; Cassidy, A.; Tjønneland, A.; Overvad, K.; Hodgson, J.M. Flavonoid intake is associated with lower mortality in the Danish Diet Cancer and Health Cohort. Nat. Commun. 2019, 10, 3651. [CrossRef]
- Yao, Y.; Sang, W.; Zhou, M.; Ren, G. Antioxidant and a-glucosidase inhibitory activity of colored grains in China. J. Agric. Food Chem. 2010, 58:770e774. [CrossRef]
- Cruz, E.C.; Andrade-Cetto, A. Ethnopharmacological field study of the plants used to treat type 2 diabetes among the Cakchiquels in Guatemala. J. Ethnopharmacol. 2015, 159, 238-244. [CrossRef]
- Awad, N.E.; Seida, A.A.; Shaffie, Z.E.N., El-Aziz, A.M, Hypoglycemic activity of Artemisia herba-alba (Asso.) used in Egyptian traditional medicine as hypoglycemic remedy. J. Appl. Pharm. Sci. 2012, 02, 30-39.
- Ahmad, W.I.; Khan, M.A.; Khan, M.; Ahmad, F. Subhan, Karim, N. Evaluation of antidiabetic and antihyperlipidemic activity of Artemisia indica linn (aeriel parts) in Streptozotocin induced diabetic rats. J. Ethnopharmacol. 2014, 151, 618-623. [CrossRef]
- Ghazanfar, K.; Ganai, B.A.; Akbar, S., Mubashir, K.; Dar, S.A.; Dar, M.Y.; Tantry. M.A. Antidiabetic activity of Artemisia amygdalina Decne in streptozotocin induced diabetic rats. BioMed Res. Int. 2014. [CrossRef]
- Nathar, V.N.; Yatoo, G.M. Micropropagation of an antidiabetic medicinal plant, Artemisia pallens. Turk. J. Bot. 2014, 38, 491-498. [CrossRef]
- Herrera, T.; Del Hierro, J.N.; Fornari, T.; Reglero, G.; Martin, D. Inhibitory effect of quinoa and fenugreek extracts on pancreatic lipase and α-amylase under in vitro traditional conditions or intestinal simulated conditions. Food Chem. 2019, 509-517. [CrossRef]
- Alamgeer Uttra, A.M.; Ahsan, H., Hasan, U.H.; Chaudhary, M.A. Traditional medicines of plant origin used for the treatment of in-flammatory disorders in Pakistan: A review, J. Tradit. Chin. Med . 2018, 38, 636-656.
- Afsar S.; Kumar, K.R.; Gopal J.V.; Raveesha P. Assessment of anti-inflammatory activity of Artemisia vulgaris leaves by cotton pellet granuloma method in Wistar albino rats, J. Pharm. Res. 2013, 7, 463-467. [CrossRef]
- Arundina, I.; Budhy, S.T.I.; Nirwanaa I., Indrawatia, R.; Luthfi M. Toxicity Test n-Hexane : Ethyl Acetate (3:7) Fraction of Sudamala (Artemisia vulgaris L.) Molecular and Cellular Life Sciences: Infectious Diseases, Biochemistry and Structural Biology 2015 Conference, MCLS 2015, Procedia Chem. 2016, 18, 174-178. [CrossRef]
- Dib, I.; Alaoui-Faris, E. F. El. Artemisia campestris L.: review on taxonomical aspects, cytogeography, biological activities and bioactive compounds, Biomed. Pharmacother. 2019, 109, 1884-1906.
- Parameswari P.; Devika, R. Phytochemical screening of bioactive compounds of Artemisia nilagirica (clarke) pamp. J. Chem. Pharmaceut. Sci. 2014, 7, 351-353.
- Farahani, Z.B.; Mirzaie, A.; Ashrafi, F.; Hesari, Alihitgar, M.R.C.; Hassan N. & all. Phytochemical composition and biological activities of Artemisia quettensis Podlech ethanolic extract. Nat. Prod. Res. 2017, 31, 2554-2558. [CrossRef]
- Khan, N.; Ahmed M. Ahmed, A, et al. Important medicinal plants of Chitral Gol National Park (CGNP) Pakistan Pak. J. Bot. 2011, 43, 797-809.
- Bano, A.; Ahmad, M.; Hadda, T.B.; Saboor, A.; Sultana, S.; Zafar, M.; Khan, M.P.Z., Arshad, M.; Ashraf, M.A. Quantitative ethno-medicinal study of plants used in the Skardu valley at high altitude of Karakoram-Himalayan range, Pakistan J. Ethnobiol. Ethnomed. 2014, 10, p. 43.
- Singleton, V.L; Orthofer, R.; Lamuela-Raventos, R.M. Methods Enzymol. 1999, 152-178.
- Lin, J-Y.; Tang, C-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140-147. [CrossRef]
- Alecu, A.; Albu., C.; Litescu, S.C.; Eremia S.A.V., Radu, G.L. Phenolic Anthocyanin Profile of Valea Calugareasca Red Wines by HPLC-PDA-MS, MALDI-TOF Analysis. Food Analyt. Meth . 2016, 9, 300-310.
- Rice-Evans, C.; Miller, N.J. Methods Enzymol., 1994, 234, 279.
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and mechanism of antioxidant activity using the DPPH free radical method. Lebensm. Wiss Technol. 1997, 30, 609–615. [CrossRef]
- Berker, K.; Guclu, K.; Tor, I.; Apak, R. Comparative evaluation of Fe (III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP) and ferricyanide reagents. Talanta 2007, 72, 1157–1165.
- Ranilla, L.G; Kwon, Y.I.; Apostolidis E.; Shetty, K.; Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol., 2010, 101, 4676-4689. [CrossRef]
- Queiroz, D.P.K, Ferreira, A.G., Lima, A.S, Lima, E.S., Lima, M.P., Isolation and identification of α-glucosidase, α-amylase and lipase inhibitors from hortia longifolia. Int. J. Pharm. Pharm. Sci. 2013, 5, 336-339.
- Morgan-Elson. J. Lab.Clin. Med., 1949, 34, 74.
- Hamberg, M.; Samuelsson, B. On the specificity of the oxygenation of unsaturated fatty acids catalyzed by soybean lipoxidase. J. Biol. Chem. 1967, 242, 5329. [CrossRef]
| Sample | Polyphenols Content (mg CA/mL) |
Flavones Content (mg RE/mL) |
Reducing Power % | % DPPH Inhibition | TEAC_ABTS mg/mL | |
|---|---|---|---|---|---|---|
| Artemisia absinthium | MF | 3232.5±140.32 | 389.08± 9.56 | 50.7±1.36 | 36.06±1.12 | 204.09±6.36 |
| concentrate | 4777.5±125.52 | 501.81±26.96 | 73.5 ± 2.36 | 65.89±2.31 | 483.24±3.86 | |
| Artemisia vulgaris | MF | 7877.5±260.96 | 505.18±30.12 | 52.9 ± 1.32 | 63.64±2.56 | 316.54±9.56 |
| concentrate | 11440.21±49.96 | 1020.12±45.12 | 93.11 ± 3.2 | 77.57±2.45 | 541.57±15.37 | |
|
Trigonella foenum- graecum |
MF | 1094.37±62.4 | 395.86±11.6 | 63.8±2.4 | 75.43±5.82 | 420.75± 17.35 |
| concentrate | 2636.87±52.7 | 777.6 ±2.7 | 97.11±5.2 | 82.18±3.7 | 591.23± 22.38 | |
| Ascorbic acid | 34.51±1.29 | 96.97±3.62 | ||||
| Compound |
A. absinthium MF μg/mL |
A. absinthium Concentrate μg/mL |
A. vulgaris MF μg/mL |
A. vulgaris Concentrate µg/mL |
T. foenum-graecum MF μg/mL |
T. foenum-graecum Concentrate μg/mL |
|---|---|---|---|---|---|---|
| Chlorogenic acid | 259.42 | 297.92 | 301.02 | 350.67 | 11.02 | 68.17 |
| Caffeic acid | 2.68 | 3.26 | 2.44 | 3.06 | - | - |
| Rosmarinic acid | 21.10 | 22.65 | 3.36 | 3.89 | - | - |
| Coumaric acid | - | - | - | - | 7.29 | 7.74 |
| Umbelifferone | 6.95 | 7.93 | 7.12 | 8.88 | - | - |
| Quercetol | 0.62 | 0.73 | 0.81 | 0.91 | - | - |
| Luteolin | 4.75 | 5.57 | 12.39 | 14.49 | 3.48 | 3.97 |
| Apigenin | 0.72 | 1.03 | 2.50 | 2.66 | - | - |
| Rutin | 12.59 | 15.66 | 18.39 | 19.65 | u.d.l | 84.92 |
| Ellagic acid | 4.72 | 5.17 | - | - | - | - |
| Isoquercitrin | 1.54 | 1.96 | 3.73 | 3.74 | 7.30 | 20.08 |
| Genistin | - | - | - | - | 1286.19 | 2032.98 |
| Samples | Inhibition of α-Amylase IC50 (μg/mL) |
Inhibition of α-Glucosidase IC50 (μg/mL) |
|
|---|---|---|---|
| A. absinthium extracts | MF | 22.22 ± 0.89 | 45.16 ± 1.39 |
| concentrate | 19.42 ± 0.53 | 31.90 ± 1.89 | |
| A. vulgaris extracts | MF | 17 ± 0.98 | 96.04 ± 3.21 |
| concentrate | 8.57 ± 2.31 | 77.13 ± 2.36 | |
| T. foenum-graecum extracts | MF concentrate |
24.18 ± 1.4 3.22 ± 0.3 |
28.19 ± 1.8 11.14 ± 0.9 |
| Rosmarinic acid | 0.89 ± 0.06 | 0.186 ± 0.008 | |
| Chlorogenic acid | 1.9 ± 0.07 | 0.59 ± 0.025 | |
| Acarbose | 3.5 ± 0.18 | 5.9 ± 0.38 | |
| Samples | Inhibition of HYA IC50 (μg/mL) |
Inhibition of LOX IC50 (μg/mL) |
|
|---|---|---|---|
| Artemisia absinthium extracts | MF | 78.06 ± 2.32 | 52.89 ± 2.12 |
| concentrate | 34.71 ± 1.26 | 19.71 ± 0.79 | |
| Artemisia vulgaris extracts | MF | 74.10± 2.63 | 182.4 ± 10.52 |
| concentrate | 17.18 ± 1.19 | 112.75 ± 8.56 | |
| T. foenum-graecum extracts | MF concentrate |
67.40 ± 2.65 17.57 ± 1.23 |
31.07 ± 1.35 19.69 ± 0.52 |
| Ibuprofen | 5.73 ± 0.21 | - | |
| Rosmarinic acid | - | 30.30 ± 1.23 | |
| Chlorogenic acid | - | 26.12 ± 1.35 | |
| Rutin | - | 22.34 ± 1.89 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).