Submitted:
20 September 2023
Posted:
22 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Phytovirus Vectors
2.1. Phytoviruses Insect Vector Interactions
2.2. Effect of Phytoviruses on the Host Behavior
2.3. Transmission Mediators for Phytoviruses
2.4. Phytoviruses Persistent
2.5. Other Insect-Based Vectors of Phytopathogens
2.6. Mechanisms of Host Plant Resistance against Phytoviruses
3. Techniques of Phytoviruses Detection
4. Future Directions
5. Conclusions
Conflicts of Interest
References
- Achon, M.A.; Serrano, L.; Clemente-Orta, G.; Sossai, S. First report of maize chlorotic mottle virus on a perennial host, Sorghum halepense, and maize in Spain. Plant Disease 2017, 101, 393. [Google Scholar] [CrossRef]
- Adhab, M. Be smart to survive: virus-host relationships in nature. J Microbiol Biotech Food Sci. 2021, 10, e3422. [Google Scholar] [CrossRef]
- Adhab, M.; Angel, C.; Leisner, S.; Schoelz, J.E. The P1 gene of the Cauliflower mosaic virus is responsible for breaking resistance in Arabidopsis thaliana ecotype Enkheim (En-2). Virology 2018, 523, 15–21. [Google Scholar] [CrossRef]
- Adhab, M.; Finke, D.; Schoelz, J. Turnip aphids (Lipaphis erysimi) discriminate host plants based on the strain of Cauliflower mosaic virus infection. Emir J Food Agric 2019, 31, 69–75. [Google Scholar] [CrossRef]
- Agranovsky, A. Proteins Capacity in Phytovirus-Vector Interactions and Virus Transmission. Cells 2021, 10, 90. [Google Scholar] [CrossRef]
- Akhter, M.S.; Nakahara, K.S.; Masuta, C. . Resistance induction based on the understanding of molecular interactions between phytoviruses and host plants. Virol J 2021, 18, 176. [Google Scholar] [CrossRef]
- Albittar, L.; Ismail, M.; Lohaus, G.; Ameline, A.; Visser, B.; Bragard, C.; Hance, T. Bottom-up regulation of a tri-trophic system by beet yellow virus infection: consequences for aphid-parasitoid foraging behavior and development. Oecologia 2019, 191. [Google Scholar] [CrossRef]
- Ali, M.; Baek, K.-H. . Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int. J. Mol. Sci. 2020, 21, 621. [Google Scholar] [CrossRef]
- Ambethgar, V.; Kollam, M.; Chinnadurai, C.; Ramsubhag, R.; Jayaraman, J. Ecology of emerging vector-borne phytoviruses and integrated management approaches in vegetable production systems. Tropical Agriculture 2019, 95, 81–94. [Google Scholar]
- Ammar, E.D.; Tsai, C.W.; Whitfield, A.E.; Redinbaugh, M.G.; Hogenhout, S.A. Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts. Annu. Rev. Entomol. 2009, 54, 447–468. [Google Scholar] [CrossRef]
- Augustinos, A.A.; Santos-Garcia, D.; Dionyssopoulou, E.; Moreira, M.; Papapanagiotou, A.; Scarvelakis, M.; Doudoumis, V.; Ramos, S.; Aguiar, A.F.; Borges, P.A.V.; Khadem, M.; Latorre, A.; Tsiamis, G.; Bourtzis, K. . Detection and characterization of Wolbachia infections in natural populations of aphids: Is the hidden diversity fully unraveled? PLoS ONE 2011, 6, e28695. [Google Scholar] [CrossRef] [PubMed]
- Batuman, O.; Rojas, M.; Almanzar, A.; Gilbertson, R. First report of Tomato chlorotic spot virus in processing tomatoes in the Dominican Republic. Plant Disease 2014, 98, 286. [Google Scholar] [CrossRef] [PubMed]
- Berlinger, M.J. Host plant resistance to Bemisia tabaci. Agriculture, Ecosystems & Environment 1986, 17, 69–82. [CrossRef]
- Bernardo, P.; Charles-Dominique, T.; Barakat, M.; Ortet, P.; Fernandez, E.; Filloux, D.; Hartnady, P.; Rebelo, T.A.; Cousins, S.R.; Mesleard, F.; Cohez, D.; Yavercovski, N.; Varsani, A.; Harkins, G.W.; Peterschmitt, M.; Malmstrom, C.M.; Martin, D.P.; Roumagnac, P. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of phytoviruses at the ecosystem scale. The ISME Journal 2018, 12, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.I.; Rao, G.P. . Virus transmission through pollen, in Characterization of Phytoviruses (New York: Humana Press), 2020; pp. 61–64.
- Bhattacharyya, D.; Gnanasekaran, P.; Kumar, R.K.; Kushwaha, N.K.; Sharma, V.K.; Yusuf, M.A.; Chakraborty, S. A geminivirus beta satellite damages the structural and functional integrity of chloroplasts, leading to symptom formation and inhibition of photosynthesis. J Exp Bot. 2015, 66, 5881–95. [Google Scholar] [CrossRef]
- Biere, A.; Tack, A.J.M. Evolutionary adaptation in three-way interactions between plants, microbes, and arthropods. Funct Ecol 2013, 27, 646–660. [Google Scholar] [CrossRef]
- Blanc, S.; Drucker, M.; Uzest, M. . Localizing viruses in their insect vectors. Annual Review of Phytopathol. 2014, 52, 403–425. [Google Scholar] [CrossRef]
- Bragard, C.; Caciagli, P.; Lemaire, O.; Lopez-Moya, J.J.; MacFarlane, S.; Peters, D.; Susi, P.; Torrance, L. Status and prospects of phytovirus control through interference with vector transmission. Annu. Rev. Phytopathol. 2013, 51, 177–201. [Google Scholar] [CrossRef]
- Brault, V.; Uzest, M.; Monsion, B.; Jacquot, E.; Blanc, S. Aphids as transport devices for phytoviruses. Comptes Rendus—Biologies 2010, 333, 524–538. [Google Scholar] [CrossRef]
- Bright, M.; Bulgheresi, S. A complex journey: the transmission of microbial symbionts. Nat Rev Microbiol. 2010, 8, 218–30. [Google Scholar] [CrossRef]
- Bucher, E.; Prins, M. . RNA silencing: a natural resistance mechanism in plants. In Natural resistance mechanisms of plants to viruses (pp. 45-72). Springer, Dordrecht, 2006.
- Bucher, E.; Sijen, T.; De Haan, P.; Goldbach, R.; Prins, M. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. Journal of virology 2003, 77, 1329–1336. [Google Scholar] [CrossRef]
- Buchholz, A.; Trapp, S. How active ingredient localization in plant tissues determines the targeted pest spectrum of different chemistries. Pest Manage Sci 2016, 72, 929–939. [Google Scholar] [CrossRef]
- Bull, J.J.; Sanjuán, R.; Wilke, C.O. Theory of Lethal Mutagenesis for Viruses. Journal of Virology 2007, 81, 2930–2939. [Google Scholar] [CrossRef]
- Butter, N.S. . Insect Vectors and Plant Pathogens. 1st Edition, CRC Press, 2021; 496 pages. ISBN 9780367780845.
- Cassone, B.J.; Wijeratne, S.; Michel, A.P.; Stewart, L.R.; Chen, Y.T.; Yan, P.; Redinbaugh, M.G. Virus-independent and common transcriptome responses of leafhopper vectors feeding on maize infected with semi-persistently and persistent propagative transmitted viruses. BMC Genom. 2014, 15, 133. [Google Scholar] [CrossRef]
- Casteel, C.L.; Jander, G. . New synthesis: Investigating mutualisms in virus-vector interactions. J Chem Ecol. 2013, 39, 809. [Google Scholar] [CrossRef]
- Chandi, R.S.; Kataria, S.K.; Kaur, J. Arthropods as Vectors of Plant Pathogens viz-a-viz their Management. International Journal of Current Microbiology and Applied Science 2018, 7, 4006–4023. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chen, Q.; Omura, T.; Uehara-Ichiki, T.; Wei, T.Y. Sequential infection of rice dwarf virus in the internal organs of its insect vector after ingestion of virus. Virus Research 2011, 160, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jiao, Z.; Liu, D.; Liu, X.; Xia, Z.; Deng, C.; Zhou, T.; Fan, Z. One-step reverse transcription loop-mediated isothermal amplification for the detection of Maize chlorotic mottle virus in maize. J Virol Methods 2017, 240, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Chesnais, Q.; Caballero Vidal, G.; Coquelle, R.; Yvon, M.; Mauck, K.; Brault, V.; Ameline, A. Post-acquisition effects of viruses on vector behavior are important components of manipulation strategies. Oecologia 2022, 194, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, P.J.; Sertsuvalkul, N.; Casteel, C.L.; Crowder, D.W. Reciprocal plant-mediated interactions between a virus and a non-vector herbivore. Ecology 2018, 99, 2139–2144. [Google Scholar] [CrossRef]
- Cunniffe, N.J.; Taylor, N.P.; Hamelin, F.M.; Jeger, M.J. . Epidemiological and ecological consequences of virus manipulation of host and vector in phytovirus transmission. PLoS Comput Biol 2021, 17, e1009759. [Google Scholar] [CrossRef] [PubMed]
- Czosnek, H.; Rubinstein, G. Long-term association of tomato yellow leaf curl virus with its whitefly vector, Bemisia tabaci: Effect on the insect's transmission capacity, longevity, and fecundity. J. Gen. Virol. 1997, 78, 2683–2689. [Google Scholar]
- De Clerck, C.; Fujiwara, A.; Joncour, P.; Leonard, S.; Felix, M.L.; Francis, F.; Jijakli, M.H.; Tsuchida, T.; Massart, S. A metagenomic approach from an aphid’s hemolymph sheds light on the potential roles of co-existing endosymbionts. Microbiome 2015, 3, 63. [Google Scholar] [CrossRef] [PubMed]
- De Ronde, D.; Butterbach, P.; Kormelink, R. . Dominant resistance against phytoviruses. Front. Plant Sci. 2014, 5, 307. [Google Scholar] [CrossRef]
- Deshoux, M.; Monsion, B.; Uzest, M. , Insect cuticular proteins and their role in transmission of phytoviruses. Current opinion in virology 2018, 33, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Dietzgen, R.G.; Mann, K.S.; Johnson, K.N. Phytovirus–Insect Vector Interactions: Current and Potential Future Research Directions. Viruses 2016, 8, 303–322. [Google Scholar] [CrossRef]
- Dutta, P.; Kumari, A.; Mahanta, M.; Biswas, K.K.; Dudkiewicz, A.; Thakuria, D.; Abdelrhim, A.S.; Singh, S.B.; Muthukrishnan, G.; Sabarinathan, K.G.; Mandal, M.K. , Advances in Nanotechnology as a Potential Alternative for Plant Viral Disease Management. Frontiers in Microbiology 2022, 13. [Google Scholar] [CrossRef]
- Eigenbrode, S.D.; Bosque-Pérez, N.; Davis, T.S. Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. Annu. Rev. Entomol. 2018, 63, 169–191. [Google Scholar] [CrossRef]
- El-Hamalawi, Z.A.; Stanghellini, M.E. Disease development on lisianthus following aerial transmission of Fusarium avenaceum by adult shore flies, fungus gnats, and moth flies. Plant Dis. 2005, 89, 619–23. [Google Scholar] [CrossRef]
- Farooq, T.; Adeel, M.; He, Z.; Umar, M.; Shakoor, N.; da Silva, W.; Elmer, W.; White, J.C.; Rui, Y. , Nanotechnology and phytoviruses: an emerging disease management approach for resistant pathogens. ACS nano 2021, 15, 6030–6037. [Google Scholar] [CrossRef]
- Farooq, T.; Adeel, M.; He, Z.; Umar, M.; Shakoor, N.; da Silva, W.; Elmer, W.; White, J.C.; Rui, Y. , Nanotechnology and phytoviruses: an emerging disease management approach for resistant pathogens. ACS nano 2021, 15, 6030–6037. [Google Scholar] [CrossRef] [PubMed]
- Fereres, A. Insect vectors as drivers of phytovirus emergence. Curr Opin Virol. 2015, 10, 42–46. [Google Scholar] [CrossRef]
- Fereres, A.; Raccah, B. Phytovirus Transmission by Insects; eLS John Wiley and Sons Ltd.: Chichester, UK.
- Fereres, A.; Peñaflor, M.F.G.V.; Favaro, C.F.; Azevedo, K.E.X.; Landi, C.H.; Maluta, N.K.P.; Bento, J.M.S.; Lopes, J.R.S. 2016. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behavior. Viruses 2015, 8, 225. [Google Scholar] [CrossRef] [PubMed]
- Fingu-Mabola, J.C.; Francis, F. Aphid–plant–phytovirus pathosystems: influencing factors from vector behaviour to virus spread. Agriculture 2021, 11, 502. [Google Scholar] [CrossRef]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [CrossRef]
- Franco, F.P.; Túler, A.C.; Gallan, D.Z.; Gonçalves, F.G.; Favaris, A.P.; Peñaflor, M.F.G.V.; Leal, W.S.; Moura, D.S.; Bento, J.M.S.; Silva-Filho, M.C. . Fungal phytopathogen modulates plant and insect responses to promote its dissemination. ISME J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Gadhave, K.R.; Dutta, B.; Coolong Sribivasan, R. . A non-persistent aphid-transmitted potyvirus differentially alters the vector and non-vector biology through host plant quality manipulation. Science Advances 2019, 9, 2503. [Google Scholar] [CrossRef]
- Gandon, S. Evolution and Manipulation of Vector Host Choice. The American Naturalist 2018, 192, 24–34. [Google Scholar] [CrossRef]
- Garzo, E.; Moreno, A.; Plaza, M.; Fereres, A. Feeding Behavior and Virus-transmission Ability of Insect Vectors Exposed to Systemic Insecticides. Plants 2020, 9, 895–910. [Google Scholar] [CrossRef]
- Gedling, C.R.; Smith, C.M.; LeMoine CM, R.; Cassone, B.J. The Mexican bean beetle (Epilachna varivestis) regurgitome and insights into beetle-borne virus specificity. PLoS One 2018, 13, e0192003. [Google Scholar] [CrossRef]
- Gergerich, R.C. “Mechanism of virus transmission by leaf-feeding beetles,” in Virus-Insect-Plant Interactions (Elsevier), 2001; Pp. 133–142.
- Ghanim, M. A review of the mechanisms and components that determine the transmission efficiency of the Tomato Yellow Leaf Cur virus (Geminiviridae, Begomovirus) by its whitefly vector. Virus Research 2014, 186, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Goldbach, R.; Bucher, E.; Prins, M. , Resistance mechanisms to phytoviruses: an overview. Virus research 2003, 92, 207–212. [Google Scholar] [CrossRef]
- Gottlieb, Y.; Zchori-Fein, E.; Mozes-Daube, N.; Kontsedalov, S.; Skaljac, M.; Brumin, M.; Sobol, I.; Czosnek, H.; Vavre, F.; Fleury, F.; Ghanim, M. The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. Virology 2010, 84, 9310–9317. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.M.; Banerjee, N. Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and molecular biology reviews 1999, 63, 128–148. [Google Scholar] [CrossRef] [PubMed]
- Green, T.R.; Ryan, C.A. Wound-induced proteinase inhibitor in plants leaves a possible defense mechanism against insects. Science 1972, 175, 776–7. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Reddy, K.; Bhattacharyya, D.; Chakraborty, S. Plant responses to geminiviruses infection: guardians of plant immunity. Virol J. 2021, 18, 143. [Google Scholar] [CrossRef]
- Gutierrez, S.; Michalakis, Y.; Van Munster, M.; Blanc, S. Plant-microrobe–insect interactions: plant feeding by insect vectors can affect the life cycle, population genetics, and evolution of phytoviruses. Functional Ecology 2013, 27, 610–622. [Google Scholar] [CrossRef]
- Harris, K.F. 1977 Ingestion–egestion hypothesis of non-circulative virus transmission Aphids as Virus Vectors edited by, K.F. Harris and K. Maramorosch, Academic Press, New York, NY, USA, pp. 165–220.
- Hassani-Mehraban, A.; Botermans, M.; Verhoeven, J.T.J.; Meekes, E.; Saaijer, J.; Peters, D.; et al. A distinct tospovirus causing necrotic streak on Alstroemeria sp. In Colombia. Archives of Virology 2010, 155, 423–428. [Google Scholar] [CrossRef]
- Hatcher, P.E. 3-way interactions between plant-pathogenic fungi, herbivorous insects, and their host plants. Biol Rev. 1995, 70, 639–94. [Google Scholar] [CrossRef]
- He, Z.; Guo, J.-F.; Reitz, S.R.; Lei, Z.-R.; Wu, S.-Y. Review: a global invasion by the thrip, Frankliniella occidentalis: current virus vector status and its management. Insect Science 2020, 27, 626–645. [Google Scholar] [CrossRef]
- Heck, M. Insect Transmission of Plant Pathogens: A Systems Biology Perspective. M Systems 2018, 3, e00168–17. [Google Scholar] [CrossRef] [PubMed]
- Herron, C.M.; Mirkov, T.E.; da Graça, J.V.; Lee, R.F. Citrus Tristeza virus transmission by the Toxoptera citricida vector: in vitro acquisition and transmission and infectivity immune neutralization experiments. J. Virol. Methods 2006, 134, 205–11. [Google Scholar] [CrossRef] [PubMed]
- Hogenhout, S.A.; Ammar, E.D.; Whitfield, A.E.; Redinbaugh, M.G. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 2008, 46, 327–359. [Google Scholar] [CrossRef] [PubMed]
- Hoh, F.; Uzest, M.; Drucker, M.; Plisson-Chastang, C.; Bron, P.; Blanc, S.; Dumas, C. Structural insights into the molecular mechanisms of cauliflower mosaic virus transmission by its insect vector. J. Virol. 2010, 84, 4706–4713. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Lee, C.; Lee, C. . The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Phytovirus Detection. Plant Pathol J. 2018, 34, 85–92. [Google Scholar] [CrossRef]
- Aphid-transmitted viruses in vegetable crops Integrated virus disease management. Available online: https://www.daf.qld.gov.au/data/assets/pdf_file/0005/68090/Management-of-aphid.pdf (accessed on 9 December 2021).
- Hull, R.; Al-Hakim, A. . Nucleic acid hybridization in phytovirus diagnosis and characterization. Trends Biotechnol. 1988, 6, 213–218. [Google Scholar] [CrossRef]
- Hunter, W.B. . Phytoviruses and Insects. In: Capinera, J.L. (eds) Encyclopedia of Entomology. Springer, Dordrecht, 2008. /: https. [CrossRef]
- Ingwell, L.; Eigenbrode, S.; Bosque-Pérez, N. . Phytoviruses alter insect behavior to enhance their spread. Sci. Rep. 2012, 2, 578. [Google Scholar] [CrossRef] [PubMed]
- James CK, N.; Falk, B.W. Virus-vector interactions mediate nonpersistent and semi-persistent transmission of phytoviruses. Annu. Rev. Phytopathol. 2006, 44, 183–212. [Google Scholar]
- James, C.K.N.; Zhou, J.S. Insect vector-phytovirus interactions associated with non-circulative, semi-persistent transmission: Current perspectives and future challenges. Curr. Opin. Virol. 2015, 15, 48–55. [Google Scholar]
- James Neya, B.; Elisabeth Zida, P. Oumar, and Traore. Effect of insecticide treatments and seed quality on the control of cowpea aphid-borne mosaic disease. European Journal of Experimental Biology 2013, 3, 370–381. [Google Scholar]
- Janz, N.; Nylin, S.; Wahlberg, N. Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evolutionary Biology 2006, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Javed, N.; Bhatti, A.; Paradkar, P.N. Advances in Understanding Vector Behavioural Traits after Infection. Pathogens 2021, 10, 1376. [Google Scholar] [CrossRef]
- Jeger, M.; Bragard, C. The epidemiology of Xylella fastidiosa; a perspective on current knowledge and a framework to investigate plant host-vector–pathogen interactions. Phytopathology 2019, 109, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Jeger, M.J. The Epidemiology of Phytovirus Disease: Towards a New Synthesis. Plants 2020, 9, 1768. [Google Scholar] [CrossRef]
- Jeske, H.; Lütgemeier, M.; Preiss, W. DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. Embo J. 2001, 20, 6158–67. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.C.; Rayapati, A.; Naidu, R.A. Global Dimensions of Phytovirus Diseases: Current Status and Future Perspectives, Annurev. of Virology 2019, 6, 387–409. [Google Scholar]
- Kennedy, J.S.; Day, M.F.; Eastop, V.F. . A Conspectus of Aphids as Vectors of Phytoviruses; Commonwealth Institute of Entomólogy: London, UK, 1962. [Google Scholar]
- Kersch-Becker, M.F.; Thaler, J.S. Virus strains differentially induce plant susceptibility to aphid vectors and chewing herbivores. Oecologia 2014, 174, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Kluth, S.; Kruess, A.; Tscharntke, T. . Insects as vectors of plant pathogens: mutualistic and antagonistic interactions. Oecologia 2002, 133, 193–199. [Google Scholar] [CrossRef]
- Kollenberg, M.; Winter, S.; Gotz, M. Quantification and localization of Watermelon chlorotic stunt virus and tomato yellow leaf curl virus (Geminiviridae) in populations of Bemisia tabaci (Hemiptera, Aleyrodidae) with differential virus transmission characteristics. PLoS ONE 2014, 9, e111968. [Google Scholar] [CrossRef]
- Koornneef, A.; Pieterse, C.M. . Cross talk in defense signaling. Plant Physiology 2008, 146, 839–844. [Google Scholar] [CrossRef]
- Koudamiloro, A.; Nwilene, F.E.; Togola, A.; Akogbeto, M. . Review Article: Insect Vectors of Rice Yellow Mottle Virus, 2015.
- Kraus, E.C.; Stout, M.J. Seed treatment using methyl jasmonate induces resistance to rice water weevil but reduces plant growth in rice. PLoS ONE 2019, 14, e0222800. [Google Scholar] [CrossRef]
- Kusia, E.S.; Subramanian, S.; Nyasani, J.O.; Khamis, F.; Villinger, J.; Ateka, E.M.; Pappu, H.R. , First report of lethal necrosis disease associated with co-infection of finger millet with Maize chlorotic mottle virus and Sugarcane mosaic virus in Kenya. Plant Disease 2015, 99, 899–900. [Google Scholar] [CrossRef]
- Labandeira, C.C.; Rose Prevec, R. Plant paleopathology and the roles of pathogens and insects. International J. of Paleopathology 2014, 4, 1–16. Available online: http://www.elsevier.com/locate/ijpp. [CrossRef]
- Larrieu, A.; Vernoux, T. . How does jasmonate signaling enable plants to adapt and survive? BMC Biol. 2016, 14, 79. [Google Scholar] [CrossRef]
- Lefevre, T.; Thomas, F. . Behind the scene, something else is pulling the strings: emphasizing parasitic manipulation in vector-borne diseases. Infection, genetics and evolution 2008, 8, 504–519. [Google Scholar] [CrossRef]
- Legg, J.P.; Jeremiah, S.C.; Obiero, H.M.; Maruthi, M.N.; Ndyetabula, I.; Okao-Okuja, G.; Bouwmeester, H.; Bigirimana, S.; Tata-Hangy, W.; Gashaka, G.; Mkamilo, G. , Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus research 2011, 159, 161–170. [Google Scholar] [CrossRef]
- Leonetti, P.; Stuttmann, J.; Pantaleo, V. Regulation of plant antiviral defense genes via host RNA-silencing mechanisms. Virol J. 2021, 18, 194. [Google Scholar] [CrossRef]
- Lima, É.F.; Silva, L.D.M.; Fontes, L.D.S.; de Borbón, C.M. Identification of second instar larvae of thrips (Thysanoptera: Thripidae) vectors of Orthotospovirus (Tospoviridae) in South America. Austral Entomology 2022, 61, 199–208. [Google Scholar] [CrossRef]
- Liu, B.M.; Preisser, E.L.; Chu, D.; Pan, H.P.; Xie, W.; Wang, S.L.; Wu, Q.J.; Zhou, X.G.; Zhang, Y.J. Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and Tomato yellow leaf curl virus. J. Virol. 2013, 87, 4929–4937. [Google Scholar] [CrossRef]
- Liu, L.Y.; Ye, H.Y.; Chen, T.H.; Chen, T.C. Development of a microarray for simultaneous detection and differentiation of different tospoviruses that are serologically related to tomato spotted wilt virus. Journal of Virology 2017, 14, 1. [Google Scholar] [CrossRef]
- Loebenstein, G.; Carr, J.P. Natural Resistance Mechanisms of Plants to Viruses, springer book, 1-430.
- Lou, Y.G.; Du, M.H.; Turlings TC, J.; Cheng, J.A.; Shan, W.F. . Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid, Anagrus nilaparvatae. J. Chem. Ecol. 2005, 31, 1985–2002. [Google Scholar] [CrossRef]
- Ma, E.; Zhu, Y.; Liu, Z.; Wei, T.; Wang, P.; Cheng, G. Interaction of Viruses with the Insect Intestine. Annu. Rev. Virol. 2021, 8, 115–131. [Google Scholar] [CrossRef]
- MacKenzie, T.D.B.; Fageria, M.S.; Nie, X.; Singh, M. Effects of crop management practices on the current-season spread of Potato Virus Y. Plant Disease 2013, 98, 213–222. [Google Scholar] [CrossRef]
- Mansoor, S.; Zafar, Y.; Briddon, R.W. Geminivirus disease complexes: the threat is spreading. Trends Plant Sci. 2006, 11, 209–212. [Google Scholar] [CrossRef]
- Maree, H.J.; Fox, A.; Al Rwahnih, M.; Boonham, N.; Candresse, T. Application of HTS for routine phytovirus diagnostics: state of the art and challenges. Front. Plant Sci. 2018, 9, 1082. [Google Scholar] [CrossRef]
- Marmonier, A.; Velt, A.; Villeroy, C.; Rustenholz, C.; Chesnais, Q.; Brault, V. Differential gene expression in aphids following virus acquisition from plants or from an artificial medium. BMC Genomics 2022, 23, 333. [Google Scholar] [CrossRef]
- Martin, B.; Collar, J.L.; Tjallingii, W.F.; Fereres, A. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted phytoviruses. J. Gen. Virol. 1997, 78, 2701–2705. [Google Scholar] [CrossRef]
- Martinière, A.; Bak, A.; Macia, J.L.; Lautredou, N.; Gargani, D.; Doumayrou, J.; Garzo, E.; Moreno, A.; Fereres, A.; Blanc, S.; Drucker, M. , A virus responds instantly to the presence of the vector on the host and forms transmission morphs. Elife 2013, 2, p e00183. [Google Scholar] [CrossRef]
- Marwal, A.; Gaur, R.K. Host Plant Strategies to Combat Against Viruses Effector Proteins. Curr Genomics 2020, 21, 401–410. [Google Scholar] [CrossRef]
- Massart, S.; Olmos, A.; Jijakli, H.; Candresse, T. Current impact and future directions of high throughput sequencing in phytovirus diagnostics. Virus research 2014, 188, 90–96. [Google Scholar] [CrossRef]
- Mauck k Bosque-Pérez, N.A.; Eigenbrode, S.D.; De Moraes, C.M.; Mescher, M.C. Transmission mechanisms shape pathogen effects on host–vector interactions: evidence from phytoviruses. Functional Ecology 2012, 26, 1162–1175. [Google Scholar] [CrossRef]
- Maule, A.J.; Caranta, C.; Boulton, M.I. Review: Sources of natural resistance to phytoviruses: status and prospects. Molecular Plant Pathology 2007, 8, 223–231. [Google Scholar] [CrossRef]
- McKenzie, C.L. Effect of Tomato Mottle Virus (ToMoV) on Bemisia tabaci Biotype B (Homoptera: Aleyrodidae) Oviposition and Adult Survivorship on Healthy Tomato. Florida Entomologist 2002, 85, 367–368. [Google Scholar] [CrossRef]
- Mittapelly, P.; Rajarapu, S.P. Applications of Proteomic Tools to Study Insect Vector–Phytovirus Interactions. Life 2020, 10, 143. [Google Scholar] [CrossRef]
- Montero-Astua, M.; Ullman, D.E.; Whitfield, A.E. Salivary gland morphology, tissue tropism, and the progression of tospovirus infection in Frankliniella occidentalis. Virology 2016, 493, 39–51. [Google Scholar] [CrossRef]
- Moreno, A.; Tjallingii, W.F.; Fernandez-Mata, G.F.; Fereres, A. Differences in the mechanism of inoculation between a semi-persistent and a non-persistent aphid-transmitted phytovirus. Journal of General Virology 2012, 93, 662–667. [Google Scholar] [CrossRef]
- Moritz, G.; Kumm, S.; Mound, L. Tospovirus transmission depends on thrips ontogeny. Virus Res. 2004, 100, 143–149. [Google Scholar] [CrossRef]
- Mouhanna, A.M.; Langen, G.; Schlösser, E. Weeds as alternative hosts for BSBV, BNYVV, and the vector Polymyxa betae (German isolate). Journal of Plant Diseases and Protection 2008, 115, 193–198. [Google Scholar] [CrossRef]
- Moya, A.; Holmes, E.; González-Candelas, F. . The population genetics and evolutionary epidemiology of RNA viruses. Nat Rev Microbiol 2004, 2, 279–288. [Google Scholar] [CrossRef]
- Mulot, M.; Boissinot, S.; Monsion, B.; Rastegar, M.; Clavijo, G.; Halter, D.; Bochet, N.; Erdinger, M.; Brault, V. A Comparative Analysis of RNAi-Based Methods to Down-Regulate Expression of Two Genes Expressed at Different Levels in Myzus persicae. Viruses 2016, 8, 316. [Google Scholar] [CrossRef]
- N’cho, A.J.; Seka, K.; Assiri, K.P.; Simiand, C.; Otron, D.H.; Ochou, G.; Konan, K.A.J.; Kouadio, M.F.; Fondio, L.; Atta Diallo, H.; Martin, T. , Genetic diversity of whitefly species of the Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) species complex, associated with vegetable crops in Côte d’Ivoire. Plos one 2022, 17, e0276993. [Google Scholar] [CrossRef] [PubMed]
- Nagata, T.; Almeida, A.C.L.; Resende, R.O.; de Avila, A.C. The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathology 2004, 53, 136–140. [Google Scholar] [CrossRef]
- Nalam, V.; Louis, J.; Shah, J. Plant defense against aphids, the pest extraordinaire. Plant Science 2019, 279, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Nault, L.R. Arthropod transmission of phytoviruses: a new synthesis. Annals of the Entomological Society of America. 1997, 90, 521–541. [Google Scholar] [CrossRef]
- Nault, L.R.; Ammar, E. Leafhopper and planthopper transmission of phytoviruses. Annu. Rev. Entomol. 1989, 34, 503–529. [Google Scholar] [CrossRef]
- Ng, J.C.K.; Falk, B.W. Virus-Vector Interactions Mediating Nonpersistent and Semi Persistent Transmission of Phytoviruses. Annual Review of Phytopathology 2006, 44, 183–212. [Google Scholar] [CrossRef] [PubMed]
- Nigam, D. Genomic Variation and Diversification in Begomovirus Genomes: Implications for Host and Vector Adaptation. Plants 2021, 10. [Google Scholar] [CrossRef]
- Núñez-Farfán, J.; Fornoni, J.; Valverde, P.L. The evolution of resistance and tolerance to herbivores. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 541–566. [Google Scholar] [CrossRef]
- Okada, K.; Abe, H.; Arimura, G. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol. 2015, 56, 16–27. [Google Scholar] [CrossRef]
- Pakkianathan, B.C.; Kontsedalov, S.; Lebedev, G.; Mahadav, A.; Zeidan, M.; Czosnek, H.; Ghanim, M. Replication of Tomato yellow leaf curl virus in its whitefly vector, Bemisia tabaci. J. Virol. 2015, 89, 9791–9803. [CrossRef]
- Pan, L.-L.; Cui, X.-Y.; Chen, Q.-F.; Wang, X.-W.; Liu, S.-S. . Cotton Leaf Curl Disease: Which Whitefly Is the Vector? Phytopathology 2018, 108, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Perilla-Henao, L.M.; Casteel, C.L. Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Plant Science 2016, 7, 1163. [Google Scholar] [CrossRef] [PubMed]
- Phoku, J.Z.; Barnard, T.G.; Potgieter, N.; Dutton, M.F. Fungal dissemination by housefly (Musca domestica L.) and contamination of food commodities in rural areas of South Africa. International Journal of Food Microbiology 2016, 217, 177–81. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, P.V.; Kliot, A.; Ghanim, M.; Cilia, M. Is there a role for symbiotic bacteria in phytovirus transmission by insects? Curr. Opin. Insect Sci. 2015, 8, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Pirone, T.P.; Megahed, E. Aphid transmissibility of some purified viruses and viral RNAs. Virology 1996, 30, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Plisson, C.; Uzest, M.; Drucker, M.; Froissart, M.; Dumas, C.; Conway, J.; Thomas, D.; Blanc, S.; Bron, P. Structure of the mature P3-virus particle complex of cauliflower mosaic virus revealed by cryo-electron microscopy. J. Mol. Biol. 2005, 346, 267–277. [Google Scholar] [CrossRef]
- Powell, G. Intracellular salivation is the aphid activity associated with the inoculation of non-persistently transmitted viruses. J. Gen. Virol. 2005, 86, 469–472. [Google Scholar] [CrossRef]
- Powell, G.; Pirone, T.; Hardie, J. Aphid stylet activities during potyvirus acquisition from plants and an in vitro system that correlates with the subsequent transmission. Eur. J. Plant Pathol. 1995, 101, 411–420. [Google Scholar] [CrossRef]
- Prasad, A.; Sharma, N.; Muthamilarasan, M.; Rana, S.; Prasad, M. Recent advances in sma RNA-mediated plant-virus interactions. Crit. Rev. Biotechnol. 2019, 39, 587–601. [Google Scholar] [CrossRef]
- Purcell, A.H. . Chapter 203: Plant Diseases and Insects. Encyclopedia of Insects (Second Edition), 2009; pp. 802–806. [CrossRef]
- Purcell, A.H.; Almeida, R.P.P. . Insects as Vectors of Disease Agents, 2005.
- Pybus, O.; Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nature Reviews Genetics 10, 540–550. [CrossRef]
- Ray, S.; Casteel, C.L. Effector-mediated plant–virus–vector interactions, The Plant Cell 2022, 34, 1514–1531. [CrossRef]
- Reitz, S.R.; Gao, Y.L.; Lei, Z.R. Thrips: Pests of concern to China and the United States. Journal of Integrative Agriculture 2011, 10, 867–892. [Google Scholar]
- Rimbaud, L.; Dallot, S.; Borron, S.; Soubeyrand, S.; Jacquot, E. Assessing the Mismatch Between Incubation and Latent Periods for Vector-Borne Diseases: The Case of Sharka. Phytopathology 2015, 105, 1408–1416. [Google Scholar] [CrossRef]
- Roossinck, M.J. Plants, viruses and the environment: ecology and mutualism. Virology 2015, 479–480, 271–277. [Google Scholar] [CrossRef]
- Roossinck, M.J.; Martin, D.P.; Roumagnac, P. Phytovirus metagenomics: advances in virus discovery. Phytopathology 2015, 105, 716–727. [Google Scholar] [CrossRef]
- Rosen, R.; Kanakala, S.; Kliot, A.; Pakkianathan, B.C.; Abu Farich, B.; Santana-Magal, N.; Elimelech, M.; Kontsedalov, S.; Lebedev, G.; Cilia, M.; Ghanim, M. Persistent, circulative transmission of begomoviruses by whitefly vectors. Curr. Opin. Virol. 2015, 15, 1–8. [Google Scholar] [CrossRef]
- Rubio, L.; Galipienso, L.; Ferriol, I. Detection of Phytoviruses and Disease Management: Relevance of Genetic Diversity and Evolution. Frontiers in plant science 2020, 11, 1092. [Google Scholar] [CrossRef]
- Safarpour, H.; Safarnejad, R.; Tabatabaei, M.; Mohsenifar, A.; Rad, F.; Shahryari, F. Detection of Polymyxa betae; the transmitting agent of rhizomania disease of sugar beet, with quantum dots FRET-based biosensor. Can J Plant Pathol 2012, 34, 507–515. [Google Scholar] [CrossRef]
- Sangeetha, B.; Malathi, V.G.; Alice, D.; Suganthy, M.; Renukadevi, P. A distinct seed-transmissible strain of tomato leaf curl New Delhi virus infecting Chayote in India. Virus Res. 2018, 258, 81–91. [CrossRef]
- Sarwar, M. . Insects as transport devices of phytoviruses, In book: Applied Plant Virology 2020. [CrossRef]
- Scholthof, K.-B.G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; Hemenway, C.; Foster, G.D. . Top 10 Phytoviruses. Mol. Plant Pathol. 2011, 12, 938–954. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.A.; Fulton, J.P. . Comparison of the relationships of southern bean mosaic virus and the cowpea strain of tobacco mosaic virus with the bean leaf beetle. Virology 1978, 84, 207–209. [Google Scholar] [CrossRef]
- Shahid, M.S.; Sattar, M.N.; Iqbal, Z.; Raza, A.; Al-Sadi, A.M. . Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective. Front. Microbiol. 2021, 11, 609376. [Google Scholar] [CrossRef]
- Shi, X.; Tang, X.; Zhang, X.; Zhang, D.; Li, F.; Yan, F.; Zhang, Y.; Zhou, X.; Liu, Y. Transmission efficiency, preference, and behavior of Bemisia tabaci MEAM1 and MED under the influence of tomato chlorosis virus. Frontiers in Plant Science 2018, 8. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, Z.; Zhang, C.; Zhou, X.; Zhang, D.; Liu, Y. The molecular mechanism of efficient transmission of phytoviruses in variable virus–vector–plant interactions. Horticultural Plant Journal 2021, 7, 501–508. [Google Scholar] [CrossRef]
- Shrestha, A.; Srinivasan, R.; Riley, D.G.; Culreath, A. Direct and indirect effects of a thrips-transmitted Tospovirus on the preference and fitness of its vector, Frankliniella fusca. Entomol. Exp. Appl. 2012, 145, 260–271. [Google Scholar] [CrossRef]
- Simmons, H.E.; Dunham, J.P.; Stack, J.C.; Dickins, B.J.A.; Pagán, I.; Holmes, E.C.; Stephenson, A.G. Deep sequencing reveals the persistence of intra- and inter-host genetic diversity in natural and greenhouse populations of zucchini yellow mosaic virus. J Gen Virol. 2012, 93, 1831–1840. [Google Scholar] [CrossRef]
- Singh, S.; Awasthi, L.P.; Jangre, A. Transmission of phytoviruses in fields through various vectors. Applied Plant Virology, Academic Press, 2020; pp. 313–334. [CrossRef]
- Smith, C.M.; Gedling, C.R.; Wiebe, K.F.; Cassone, B.J. A sweet story: bean pod mottle virus transmission dynamics by Mexican bean beetles (Epilachna varivestis). Genome Biol. Evol. 2017, 9, 714–725. [Google Scholar] [CrossRef]
- Sobko, O.A.; Matsishina, N.V.; Fisenko, P.V.; Kim, I.V.; Didora, A.S.; Boginskay, N.G.; Volkov, D.I. , 2021, March. Viruses in the agrobiocenosis of the potato fields. In IOP Conference Series: Earth and Environmental Science (Vol. 677, No. 5, p. 052093). IOP Publishing.
- Stewart, L.R.; Medina, V.; Tian, T.Y.; Turina, M.; Falk, B.W.; Ng, J.C.K. A mutation in the Lettuce infectious yellow virus minor coat protein disrupts whitefly transmission but not in plant systemic movement. J. Virol. 2010, 84, 12165–12173. [Google Scholar] [CrossRef]
- Stobbe, A.; Roossinck, M.J. Phytovirus Diversity and Evolution. Current Research Topics in Plant Virology 2016, 197–215. [Google Scholar] [CrossRef]
- Stobbe, A.H.; Daniels, J.; Espindola, A.S.; Verma, R.; Melcher, U.; Ochoa-Corona, F.; Garzon, C.; Fletcher, J.; Schneider, W. E-probe diagnostic nucleic acid analysis (EDNA): a theoretical approach for handling next-generation sequencing data for diagnostics. J Microbiol. Methods 2013, 94, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Stobbe, A.H.; Roossinck, M.J. Phytovirus metagenomics: what we know and why we need to know more. Front Plant Sci. 2014, 5, 150. [Google Scholar] [CrossRef] [PubMed]
- Strange, R.N.; Scott, P.R. . Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 2005. [CrossRef] [PubMed]
- Sylvester, E.S. Aphid transmission of non-persistent phytoviruses with special reference to the Brassica nigra virus. Hilgardia 1962, 23, 53–98. [Google Scholar] [CrossRef]
- Terra, W.R.; Ferreira, C. . Biochemistry and Molecular Biology of Digestion. Insect Molecular Biology and Biochemistry, Academic Press, 2012; pp. 365–418. [CrossRef]
- Thaler, J.S.; Humphrey, P.T.; Whiteman, N.K. . Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012, 17, 260–270. [Google Scholar] [CrossRef]
- Tooker, J.F.; Giron, D. The evolution of endophagy in herbivorous insects. Front Plant Sci 2020, 11, 581816. [Google Scholar] [CrossRef]
- Uzest, M.; Drucker, M.; Blanc, S. La transmission d’un complexe: pas si simple. Cas du virus de la mosa¨ıque du choufleur. Virology 2011, 15, 192–204. [Google Scholar]
- Uzest, M.; Gargani, D.; Drucker, M.; He´brard, E.; Garzo, E.; Candresse, T.; Fereres, A.; Blanc, S. Proc Natl Acad Sci USA 2007, 104, 17959–17964. [CrossRef]
- van Munster, M. Impact of Abiotic Stresses on Phytovirus Transmission by Aphids. Viruses. 2020, 12, 216. [CrossRef]
- van Munster, M.; Yvon, M.; Vile, D.; Dader, B.; Fereres, A.; Blanc, S. Water deficits enhance the transmission of phytoviruses by insect vectors. PLoS ONE 2017, 12, e0174398. [Google Scholar] [CrossRef]
- Villamor DE, V.; Ho, T.; Al Rwahnih, M.; Martin, R.R.; Tzanetakis, I.E. . High throughput sequencing for phytovirus detection and discovery. Phytopathology 2019, 109, 716–725. [Google Scholar] [CrossRef]
- Walling, L.L. . The myriad plant responses to herbivores. J. Plant Growth Regul. 2000, 19, 195–216. [Google Scholar] [CrossRef]
- Wamwiri, F.N.; Changasi, R.E. Tsetse flies (Glossina) as Vectors of Human African Trypanosomosis: A Review "BioMed Research International 2016, 2016, 6201350. [CrossRef]
- Wang, L.L.; Wang, X.R.; Wei, X.M.; Huang, H.; Wu, J.X.; Chen, X.X.; Liu, S.S.; Wang, X.W. The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies. Autophagy 2016, 12, 1560–1574. [CrossRef] [PubMed]
- Wei, M.S.; Li, G.F.; Ma, J.; Kong, J. First report of Pelargonium flower break virus infecting Pelargonium plants in China. Plant Disease 2015, 99, 735. [Google Scholar] [CrossRef]
- West, S.A.; Griffin, A.S.; Gardner, A. , Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. Journal of evolutionary biology 2007, 20, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, A.E.; Falk, B.W.; Rotenberg, D. , Insect vector-mediated transmission of phytoviruses. Virology 2015, 479, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, A.E.; Falk, B.W.; Rotenberg, D. Insect vector-mediated transmission of phytoviruses. Virology 2015, 479, 278–289. [Google Scholar] [CrossRef]
- Wielkopolan, B.; Jakubowska, M.; Obrępalska-Stęplowska, A. . Beetles as Plant Pathogen Vectors. Front. Plant Sci. 2021, 12, 748093. [Google Scholar] [CrossRef]
- Wu, H.; Pang, R.; Cheng, T.; Xue, L.; Zeng, H.; Lei, T.; Chen, M.; Wu, S.; Ding, Y.; Zhang, J.; Shi, M.; Wu, Q. Abundant and diverse RNA viruses in insects revealed by RNA-Seq analysis: ecological and evolutionary implications. mSystems 2020, 5, e00039–20. [Google Scholar] [CrossRef]
- Wu, S.Y.; Xing, Z.L.; Ma, T.T.; Xu, D.W.; Li, Y.Y.; Lei, Z.R.; Gao, Y.L. , Competitive interaction between Frankliniella occidentalis and locally present thrips species: a global review. J Pest Sci 2020, 94, 5–16. [Google Scholar] [CrossRef]
- Wu, W.; Shan, H.-W.; Li, J.-M.; Zhang, C.-X.; Chen, J.-P.; Mao, Q. . Bacterial Symbionts in the Transmission of Phytoviruses by Hemipteran Vectors. Front. Microbiol. 2022, 13, 805352. [Google Scholar] [CrossRef]
- Wu, X.; Ye, J. Manipulation of Jasmonate Signaling by Phytoviruses and Their Insect Vectors. Viruses 2020, 12, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Li, S.J.; Ahmed, M.Z.; De Barro, P.J.; Ren, S.X.; Qiu, B.L. Inactivation of Wolbachia reveals its biological roles in whitefly hosts. PLoS ONE 2012, 7, e48148. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Arthursc, S.; Lud, Z.; Liangd, Z.; Mao, R. Use of horticultural mineral oils to control potato virus Y (PVY) and other non-persistent aphid-vectored viruses. Crop Protection 2019, 118, 97–103. [Google Scholar] [CrossRef]
- Zaffaroni, M.; Rimbaud, L.; Mailleret, L.; Cunniffe, N.J.; Bevacqua, D. Modeling interference between vectors of non-persistently transmitted phytoviruses to identify effective control strategies. PLoS Comput Biol. 2021, 17, e1009727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Luan, J.B.; Qi, J.F.; Huang, C.J.; Li, M.; Zhou, X.P.; Liu, S.S. Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Mol Ecol. 2012, 21, 1294–1304. [Google Scholar] [CrossRef]
- Zhao, P.; Yao, X.; Cai, C.; Li, R.; Du, J.; Sun, Y.; Wang, M.; Zou, Z.; Wang, Q.; Kliebenstein, D.J. Viruses mobilize plant immunity to deter nonvector insect herbivores. Science Advances 2019, 5, eaav9801. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Ganji, S.; Schiebe, C.; Bohman, B.; Weinstein, P.; Krokene, P.; Borg-Karlson, A.K.; Unelius, C.R. Convergent evolution of semiochemicals across kingdoms: bark beetles and their fungal symbionts. ISME J. 2019, 13, 1535–45. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wang, Q.; Xu, Z.; Liu, R.; Cui, F. Distinct replication and gene expression strategies of the Rice Stripe virus in vector insects and host plants. J Gen Virol. 2019, 100, 877–888. [Google Scholar] [CrossRef]
- Zheng, L.M.; Mao, Q.Z.; Xie, L.H.; Wei, T.Y. Infection route of rice grassy stunt virus, a Tenuiviruses, in the body of its brown plant hopper vector, Nilaparvata lugens (Hemiptera: Delphacidae) after ingestion of virus. Virus Res. 2014, 188, 170–173. [Google Scholar] [CrossRef]
| Insect Vectors | Host Crops | Target Viruses | References |
|---|---|---|---|
| Aphids | Cauliflower | Cauliflower mosaic virus | Blanc et al. (2014); Hoh et al. (2010); Zest et al. (2007); Plisson et al. (2005) |
| Cowpea | Cowpea mosaic virus | James et al.(2013); Scott and Fulton (1978) | |
| Cucumber | Cucumber mosaic virus | Pirone and Megahed (1966) | |
| Bean | Bean common mosaic Virus |
https://www.daf.qld.gov.au/__data/assets; Scott and Fulton (1978) | |
| Brassicas | Turnip mosaic virus | https://www.daf.qld.gov.au/__data/assets | |
| Capsicum | Cucumber mosaic virus, potato virus y | https://www.daf.qld.gov.au/__data/assets | |
| Carrot | Carrot virus y | https://www.daf.qld.gov.au/__data/assets | |
| Celery | Celery mosaic virus | https://www.daf.qld.gov.au/__data/assets | |
| Cucurbitae family | Papaya ringspot virus (w strain), watermelon Mosaic virus, zucchini Yellow mosaic virus |
https://www.daf.qld.gov.au/__data/assets | |
| Lettuce |
Lettuce mosaic virus | https://www.daf.qld.gov.au/__data/assets | |
| Plum | Plum pox virus | Rimbaud et al. (2015) | |
| Solanaceae family | Potato virus | MacKenzie et al. (2013) | |
| Sweet corn | Johnson grass mosaic Virus |
https://www.daf.qld.gov.au/__data/assets | |
| Sweet potato | Sweet potato feathery Mottle virus |
https://www.daf.qld.gov.au/__data/assets | |
| Tobacco | Tobacco rattle virus | Mulot et al. (2016) | |
| Potato | Potato virus y |
Yang et al. ( 2019) |
|
| Banana | Wolbachia | De Clerck et al. (2015); Leonard et al. (2015); Kollenberg et al. (2014); Xue et al. (2012); Augustinos et al. (2011) | |
| Cauliflower | Cauliflower mosaic virus | Zest et al. (2007) | |
| Beetles Grasshoppers, | Rice | Rice yellow mottle virus | Koudamiloro et al. (2015) |
| Leafhopper | Maize | Maize chlorotic dwarf virus | Cassone et al. (2014) |
| Rice | Rice yellow mottle virus | Koudamiloro et al. (2015) | |
| Leafhopper | Rice | Rice dwarf virus | Chen et al. (2004) |
| Plant Hoppers and Leafhoppers | Family Poaceae (such as rice) | Tenuiviruses. E.g. Rice stripe virus | Zhao et al. (2019); Zheng et al. (2014); Nault and Ammar (1989) |
| Thrips (Thysanoptera: Thripidae) |
Tomato | Tomato spotted wilt virus | Lu et al. (2020) |
| Tomato | Tomato spotted wilt virus | Montero-Astua et al. (2016); Whitfield et al. (2015); Moritz et al. (2004) |
|
| Chrysanthemum, groundnut, pelargonium flower break virus, and maize | Important thirps species are found in the genus: 1). Orthotospovirus (Tospoviridae): alstroemeria necrotic streak orthotospovirus; 2). chrysanthemum stem necrosis orthotospovirus; 3). groundnut ringspot orthotospovirus; 4). impatiens necrotic spot orthotospovirus, 5). Tomato chlorotic spot or orthotospovirus 6. tomato zonate spot orthotospovirus and tomato yellow ring virus, 7. Pelargonium flower break virus of the genus Alphacarmovirus, maize chlorotic mottle virus of the genus Machlomovirus (both in Tombusviridae), and yellow leaf curl virus of tomatoes. | Lima et al. (2022); He et al. (2020); Liu et al. (2017); Achon et al. (2017); Chen et al. (2017); Kusia et al. (2015); Wei et al. (2015); Batuman et al. (2014); Reitz et al. (2011); Hassani-Mehraban et al. (2010); Nagata et al. (2004) |
|
| Whiteflies Gennadius (Hemiptera: Aleyrodidae |
Tomato | Tomato chlorosis virus and Tomato severe rugose virus | N’cho et al. (2022); Sangeetha et al. (2018); Pakkianathan et al. (2015); Fereres et al. (2016); Wang et al. (2016); Liu et al. (2013); Gottlieb et al. (2010) |
| Banana | Wolbachia | De Clerck et al. (2015); Leonard et al. (2015); Kollenberg et al. (2014); Xue et al. (2012); Augustinos et al. (2011) | |
| Cotton | Cotton leaf curl Multan virus and Tomato yellow leaf curl | Zhao et al. (2019); Pan et al. (2018) | |
| Wide Host range>420 plant species | Family Geminiviridae e.g. begomoviruses | Nigam (2021); Rosen et al. (2015); Ghanim, (2014) |
|
| Cassava, Sweet Potatoes Tobacco |
Tomato yellow leaf curl disease and Cassava mosaic disease | N’cho et al. (2022); Berlinger (1986); Legg et al. (2011) | |
| Mexican bean beetles | Soybean | Bean pod mottle virus | Gedling et al. (2018); Smith et al. (2017) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).