Submitted:
04 September 2023
Posted:
06 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Effect of climate change on host fish
4. Climate change and fish production
5. Climate change and parasites
6. Fish parasites as bioindicators of environmental health
7. Conclusion
Acknowledgments
Conflicts of Interest
References
- Brander, K.; Cochrane, K.; Barange, M.; Soto, D. , Climate change implications for fisheries and aquaculture. Climate change impacts on fisheries aquaculture: A global analysis, 2017; 1, 45–62. [Google Scholar]
- Pachauri, R. K.; Allen, M. R.; Barros, V. R.; Broome, J.; Cramer, W.; Christ, R.; Church, J. A.; Clarke, L.; Dahe, Q.; Dasgupta, P. , Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc: 2014.
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. , Impacts of climate change on the future of biodiversity. Ecology letters 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Ojima, R.; Marandola Jr, E. , Mudanças climáticas e as cidades: novos e antigos debates na busca da sustentabilidade urbana e social. Editora Blucher: 2013; Vol. 1.
- Parmesan, C. , Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Patz, J. A.; Graczyk, T. K.; Geller, N.; Vittor, A. Y. , Effects of environmental change on emerging parasitic diseases. International journal for parasitology 2000, 30, 1395–1405. [Google Scholar] [CrossRef]
- Charron, D. F.; Thomas, M. K.; Waltner-Toews, D.; Aramini, J. J.; Edge, T.; Kent, R. A.; Maarouf, A. R.; Wilson, J. , Vulnerability of waterborne diseases to climate change in Canada: a review. Journal of Toxicology Environmental Health, Part A, 2004; 67, 1667–1677. [Google Scholar]
- Confalonieri, U. E.; Margonari, C.; Quintão, A. F. , Environmental change and the dynamics of parasitic diseases in the Amazon. Acta tropica 2014, 129, 33–41. [Google Scholar] [CrossRef]
- Dantas-Torres, F. , Climate change, biodiversity, ticks and tick-borne diseases: the butterfly effect. International Journal for Parasitology: parasites wildlife, 2015; 4, 452–461. [Google Scholar]
- Haines, A.; Kovats, R. S.; Campbell-Lendrum, D.; Corvalán, C. , Climate change and human health: impacts, vulnerability and public health. Public health 2006, 120, 585–596. [Google Scholar] [CrossRef]
- Lafferty, K. D. , Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitology today 1997, 13, 251–255. [Google Scholar] [CrossRef]
- McMichael, A. J.; Woodruff, R. E.; Hales, S. , Climate change and human health: present and future risks. The Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Pascual, M.; Dobson, A. , Seasonal patterns of infectious diseases. PLoS Medicine 2005, 2, e5. [Google Scholar] [CrossRef]
- Reeves, W. C.; Hardy, J. L.; Reisen, W. K.; Milby, M. M. , Potential effect of global warming on mosquito-borne arboviruses. Journal of medical entomology 1994, 31, 323–332. [Google Scholar] [CrossRef]
- Hales, S.; Kovats, S.; Woodward, A. , What El Niño can tell us about human health and global climate change. Global Change and Human Health 2000, 1, 66–77. [Google Scholar] [CrossRef]
- Araujo, A.; Rangel, A.; Ferreira, L. F. R. , Climatic change in northeastern Brazil: paleoparasitological data. Memórias do Instituto Oswaldo Cruz, 1993; 88, 577–579. [Google Scholar]
- Dunn, R. R.; Davies, T. J.; Harris, N. C.; Gavin, M. C. , Global drivers of human pathogen richness and prevalence. Proceedings of the Royal Society B: Biological Sciences, 2010; 277, 2587–2595. [Google Scholar]
- Nava, A.; Shimabukuro, J. S.; Chmura, A. A.; Luz, S. L. B. , The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR journal 2017, 58, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, A. R. S. d.; Motta-Veiga, M. , Análise dos impactos sociais e à saúde de grandes empreendimentos hidrelétricos: lições para uma gestão energética sustentável. Ciência Saúde Coletiva, 2012; 17, 1387–1398. [Google Scholar]
- Rosado-García, F. M.; Guerrero-Flórez, M.; Karanis, G.; Hinojosa, M. D. C.; Karanis, P. , Water-borne protozoa parasites: the Latin American perspective. International Journal of Hygiene Environmental Health 2017, 220, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Short, E. E.; Caminade, C.; Thomas, B. N. , Climate change contribution to the emergence or re-emergence of parasitic diseases. Infectious Diseases: Research Treatment, 2017; 10, 1178633617732296. [Google Scholar]
- Fecchio, A.; Wells, K.; Bell, J. A.; Tkach, V. V.; Lutz, H. L.; Weckstein, J. D.; Clegg, S. M.; Clark, N. J. , Climate variation influences host specificity in avian malaria parasites. Ecology Letters 2019, 22, 547–557. [Google Scholar] [CrossRef]
- Kadlec, D.; Šimková, A.; Jarkovský, J.; Gelnar, M. , Parasite communities of freshwater fish under flood conditions. Parasitology Research 2003, 89, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Rohr, J. R.; Dobson, A. P.; Johnson, P. T. J.; Kilpatrick, A. M.; Paull, S. H.; Raffel, T. R.; Ruiz-Moreno, D.; Thomas, M. B. , Frontiers in climate change–disease research. Trends in ecology evolution 2011, 26, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Burraco, P.; Orizaola, G.; Monaghan, P.; Metcalfe, N. B. , Climate change and ageing in ectotherms. Global Change Biology 2020, 26, 5371–5381. [Google Scholar] [CrossRef]
- Pörtner, H. O. , Climate-dependent evolution of Antarctic ectotherms: an integrative analysis. Deep Sea Research Part II: Topical Studies in Oceanography, 2006; 53, 1071–1104. [Google Scholar]
- Sures, B.; Nachev, M.; Selbach, C.; Marcogliese, D. J. , Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’. Aquatic Toxicology Vectors 2017, 10, 1–19. [Google Scholar] [CrossRef]
- Birk, S.; Chapman, D.; Carvalho, L.; Spears, B. M.; Andersen, H. E.; Argillier, C.; Auer, S.; Baattrup-Pedersen, A.; Banin, L.; Beklioğlu, M. , Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology Evolution 2020, 4, 1060–1068. [Google Scholar] [CrossRef]
- Topal, A.; Özdemir, S.; Arslan, H.; Çomaklı, S. , How does elevated water temperature affect fish brain?(A neurophysiological and experimental study: Assessment of brain derived neurotrophic factor, cFOS, apoptotic genes, heat shock genes, ER-stress genes and oxidative stress genes). Fish Shellfish Immunology 2021, 115, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, S.; Gesto, M.; Sadoul, B. , Temperature increase and its effects on fish stress physiology in the context of global warming. Journal of Fish Biology 2021, 98, 1496–1508. [Google Scholar] [CrossRef]
- Novacek, M. J. , Cleland, E. E, The current biodiversity extinction event: scenarios for mitigation and recovery, in: National Academy of Sciences Colloquium The Future of Evolution. Irvine, California, 2002. [Google Scholar]
- Feidantsis, K.; Georgoulis, I.; Zachariou, A.; Campaz, B.; Christoforou, M.; Pörtner, H. O.; Michaelidis, B. , Energetic, antioxidant, inflammatory and cell death responses in the red muscle of thermally stressed Sparus aurata. Journal of Comparative Physiology B 2020, 190, 403–418. [Google Scholar] [CrossRef]
- Chatterjee, S. , Oxidative stress, inflammation, and disease. In Oxidative stress and biomaterials, Elsevier: 2016; pp 35-58.
- Reuter, S.; Gupta, S. C.; Chaturvedi, M. M.; Aggarwal, B. B. , Oxidative stress, inflammation, and cancer: how are they linked? Free radical biology medicine 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.-Y.; Cho, S.-H.; Kwon, S.-H.; Eom, C.-Y.; Jeong, M. S.; Lee, W.; Kim, S.-Y.; Heo, S.-J.; Ahn, G.; Lee, K. P. , The roles of NF-κB and ROS in regulation of pro-inflammatory mediators of inflammation induction in LPS-stimulated zebrafish embryos. Fish shellfish immunology 2017, 68, 525–529. [Google Scholar] [CrossRef]
- Poynter, S.; Dixon, B. , Bony Fish Immunology. Elsevier Ltd 2017, 1–7. [Google Scholar]
- Press, C. M.; Evensen, Ø. , The morphology of the immune system in teleost fishes. Fish shellfish immunology 1999, 9, 309–318. [Google Scholar] [CrossRef]
- Alvarez-Pellitero, P. , Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Veterinary immunology imunopathology 2008, 126, 171–198. [Google Scholar] [CrossRef] [PubMed]
- Tort, L.; Balasch, J. C.; Mackenzie, S. , Fish immune system. A crossroads between innate and adaptive responses. Inmunología, 2003; 22, 277–286. [Google Scholar]
- Filipe, J. F.; Herrera, V.; Curone, G.; Vigo, D.; Riva, F. , Floods, hurricanes, and other catastrophes: a challenge for the immune system of livestock and other animals. Frontiers in veterinary science 2020, 7, 16. [Google Scholar] [CrossRef]
- Makrinos, D. L.; Bowden, T. J. , Natural environmental impacts on teleost immune function. Fish Shellfish Immunology 2016, 53, 50–57. [Google Scholar] [CrossRef]
- Costa, J. C. V., A. L, Extreme climate scenario and parasitism affect the Amazonian fish Colossoma macropomum. Science of the Total Environment 2020, 726. [Google Scholar] [CrossRef]
- Lõhmus, M.; Björklund, M. , Climate change: what will it do to fish—parasite interactions? Biological Journal of the Linnean Society 2015, 116, 397–411. [Google Scholar] [CrossRef]
- Morley, N. J.; Lewis, J. W. , Temperature stress and parasitism of endothermic hosts under climate change. Trends in Parasitology 2014, 30, 221–227. [Google Scholar] [CrossRef]
- Stankus, A. , State of world aquaculture 2020 and regional reviews: FAO webinar series. FAO Aquaculture Newsletter 2021, 17–18. [Google Scholar]
- Tacon, A. G. J. , Trends in global aquaculture and aquafeed production: 2000–2017. Reviews in Fisheries Science Aquaculture 2020, 28, 43–56. [Google Scholar] [CrossRef]
- Valladão, G. M. R.; Gallani, S. U.; Pilarski, F. , South American fish for continental aquaculture. Reviews in Aquaculture 2018, 10, 351–369. [Google Scholar] [CrossRef]
- Jesus, T. F.; Moreno, J. M.; Repolho, T.; Athanasiadis, A.; Rosa, R.; Almeida-Val, V. M. F.; Coelho, M. M. , Protein analysis and gene expression indicate differential vulnerability of Iberian fish species under a climate change scenario. PLoS One 2017, 12, e0181325. [Google Scholar] [CrossRef] [PubMed]
- Methling, C.; Aluru, N.; Vijayan, M. M.; Steffensen, J. F. , Effect of moderate hypoxia at three acclimation temperatures on stress responses in Atlantic cod with different haemoglobin types. Comparative Biochemistry Physiology Part A: Molecular Integrative Physiology, 2010; 156, 485–490. [Google Scholar]
- Scharsack, J. P.; Wieczorek, B.; Schmidt-Drewello, A.; Büscher, J.; Franke, F.; Moore, A.; Branca, A.; Witten, A.; Stoll, M.; Bornberg-Bauer, E. , Climate change facilitates a parasite’s host exploitation via temperature-mediated immunometabolic processes. Global Change Biology 2020, 27, 94–107. [Google Scholar] [CrossRef]
- Borgwardt, F.; Unfer, G.; Auer, S.; Waldner, K.; El-Matbouli, M.; Bechter, T. , Direct and indirect climate change impacts on brown trout in central Europe: How thermal regimes reinforce physiological stress and support the emergence of diseases. Frontiers in Environmental Science 2020, 59. [Google Scholar] [CrossRef]
- Bruneaux, M.; Visse, M.; Gross, R.; Pukk, L.; Saks, L.; Vasemägi, A. , Parasite infection and decreased thermal tolerance: impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. Functional Ecology 2017, 31, 216–226. [Google Scholar] [CrossRef]
- Karvonen, A.; Rintamäki, P.; Jokela, J.; Valtonen, E. T. , Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases. International journal for parasitology 2010, 40, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J. Y.; Markkandan, K.; Han, K.; Kwon, M. G.; Seo, J. S.; Yoo, S.; Hwang, S. D.; Ji, B. Y.; Son, M.; Park, J. , Temperature-dependent immune response of olive flounder (Paralichthys olivaceus) infected with viral hemorrhagic septicemia virus (VHSV). Genes genomics 2018, 40, 315–320. [Google Scholar] [CrossRef]
- Kayansamruaj, P.; Pirarat, N.; Hirono, I.; Rodkhum, C. , Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus). Veterinary microbiology 2014, 172, 265–271. [Google Scholar] [CrossRef] [PubMed]
- De Silva, S. S.; Soto, D. , Climate change and aquaculture: potential impacts, adaptation and mitigation. Climate change implications for fisheries aquaculture: overview of current scientific knowledge. FAO Fisheries Aquaculture Technical Paper, 2009; 530, 151–212. [Google Scholar]
- Schmittner, A. , Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 2005, 434, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Eiras, J. C. , Elementos da Ictioparasitologia Porto, 1994.
- Koskivaara, M. V., E. T.; Prost, M, Dactylogyrids on the gills of roach in central Finland: features of infection and species composition. International Journal of Parasitology 1991, 21, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Byers, J. E. , Marine parasites and disease in the era of global climate change. Annual Review of Marine Science 2021, 13, 397–420. [Google Scholar] [CrossRef]
- Pounds, J. A.; Bustamante, M. R.; Coloma, L. A.; Consuegra, J. A.; Fogden, M. P. L.; Foster, P. N.; La Marca, E.; Masters, K. L.; Merino-Viteri, A.; Puschendorf, R.; Ron, S. A.; Sánchez-Azofeifa, G. A.; Still, C. J.; Young, B. E. , Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 2006, 439, 161–167. [Google Scholar] [CrossRef]
- Chame, M.; Batouli-Santos, A. L.; Brandão, M. L. , As migrações humanas e animais ea introdução de parasitas exóticos invasores que afetam a saúde humana no Brasil. FUMDHAMentos 2008, 7, 47–62. [Google Scholar]
- Buchmann, K.; Lindenstrøm, T. , Interactions between monogenean parasites and their fish hosts. International journal for parasitology 2002, 32, 309–319. [Google Scholar] [CrossRef]
- Ogawa, K. , Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda). Parasitology 2015, 142, 178–195. [Google Scholar] [CrossRef]
- WOO, P. T.; GREGORY, D. W. B. , Diseases and disorders of finfish in cage culture. CABI 2014. [Google Scholar]
- Macnab, V.; Barber, I. , Some (worms) like it hot: fish parasites grow faster in warmer water, and alter host thermal preferences. Global Change Biology 2012, 18, 1540–1548. [Google Scholar] [CrossRef]
- Harvell, C. D. e. a. , Climate Warming and Disease Risks for Terrestrial and Marine Biota. Science’s Compass Review, 2002; 296, 68. [Google Scholar]
- Peuß, R.; Box, A. C.; Chen, S.; Wang, Y.; Tsuchiya, D.; Persons, J. L.; Kenzior, A.; Maldonado, E.; Krishnan, J.; Scharsack, J. P. , Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish. Nature ecology evolution 2020, 4, 1416–1430. [Google Scholar] [CrossRef] [PubMed]
- Haines, A. P., J. A, Health Effects of Climate Change. Journal of the American Medical Association 2004, 291, 99–103. [Google Scholar] [CrossRef]
- Poulin, R.; Morand, S. , The diversity of parasites. The quarterly review of biology 2000, 75, 277–293. [Google Scholar] [CrossRef]
- Araújo, A.; Jansen, A. M.; Bouchet, F.; Reinhard, K.; Ferreira, L. F. , Parasitism, the diversity of life, and paleoparasitology. Memórias do Instituto Oswaldo Cruz, 2003; 98, 5–11. [Google Scholar]
- Nee, S.; Smith, J. M. , The evolutionary biology of molecular parasites. Parasitology 1990, 100, S5–S18. [Google Scholar] [CrossRef] [PubMed]
- Hudson, P. J.; Dobson, A. P.; Lafferty, K. D. , Is a healthy ecosystem one that is rich in parasites? Trends in ecology evolution 2006, 21, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, E. R.; Carlson, C. J.; Bueno, V. M.; Burgio, K. R.; Cizauskas, C. A.; Clements, C. F.; Seidel, D. P.; Harris, N. C. , Paradigms for parasite conservation. Conservation biology 2015, 30, 724–733. [Google Scholar] [CrossRef]
- Carlson, C. J.; Burgio, K. R.; Dougherty, E. R.; Phillips, A. J.; Bueno, V. M.; Clements, C. F.; Castaldo, G.; Dallas, T. A.; Cizauskas, C. A.; Cumming, G. S. , Parasite biodiversity faces extinction and redistribution in a changing climate. Science advances 2017, 3, e1602422. [Google Scholar] [CrossRef]
- Carlson, C. J.; Hopkins, S.; Bell, K. C.; Doña, J.; Godfrey, S. S.; Kwak, M. L.; Lafferty, K. D.; Moir, M. L.; Speer, K. A.; Strona, G. , A global parasite conservation plan. Biological Conservation 2020, 250, 108596. [Google Scholar] [CrossRef]
- Vidal-Martinez, V. M.; Pech, D.; Sures, B.; Purucker, S. T.; Poulin, R. , Can parasites really reveal environmental impact? Trends in parasitology 2010, 26, 44–51. [Google Scholar] [CrossRef]
- Nachev, M.; Sures, B. , Environmental parasitology: Parasites as accumulation bioindicators in the marine environment. Journal of Sea Research 2016, 113, 45–50. [Google Scholar] [CrossRef]
- Araújo, F. , Adaptation of the index of biotic integrity based on fish assemblages in the Paraiba do Sul River, RJ, Brazil. R e v. Bras. Biol 1998, 58. [Google Scholar]
- Lafferty, K. D. , Biodiversity loss decreases parasitediversity: theory and patterns. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012; 367, 2814–2827. [Google Scholar]
- Cribb, T. H.; Chisholm, L. A.; Bray, R. A. , Diversity in the Monogenea and Digenea: does lifestyle matter? International Journal for Parasitology 2002, 32, 321–328. [Google Scholar] [CrossRef]
- Poulin, R.; Cribb, T. H. , Trematode life cycles: short is sweet? Trends in parasitology 2002, 18(4), 176–183. [Google Scholar] [CrossRef]
- MacKenzie, K. , Parasites as pollution indicators in marine ecosystems: a proposed early warning system. Marine Pollution Bulletin 1999, 38, 955–959. [Google Scholar] [CrossRef]
- Møller, A. P. , Intraspecific nest parasitism and anti-parasite behaviour in swallows, Hirundo rustica. Animal Behaviour 1987, 35, 247–254. [Google Scholar] [CrossRef]
- Lafferty, K. D.; Shaw, J. C. , Comparing mechanisms of host manipulation across host and parasite taxa. Journal of Experimental Biology 2013, 216, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Palm, H. W. , Fish parasites as biological indicators in a changing world: can we monitor environmental impact and climate change? Progress in parasitology 2011, 223–250. [Google Scholar]
- Marcogliese, D. J. , Transmission of marine parasites. Marine parasitology 2005, 280–286. [Google Scholar]
- Molbert, N.; Alliot, F.; Leroux-Coyau, M.; Médoc; Biard, C. ; Meylan, S.; Jacquin, L.; Santos, R.; Goutte, A., Potential benefits of acanthocephalan parasites for chub hosts in polluted environments. Environmental science technology 2020, 54, 5540–5549. [Google Scholar] [CrossRef]
- Mille, T.; Soulier, L.; Caill-Milly, N.; Cresson, P.; Morandeau, G.; Monperrus, M. , Differential micropollutants bioaccumulation in European hake and their parasites Anisakis sp. Environmental Pollution 2020, 265, 115021. [Google Scholar] [CrossRef]
- Sures, B.; Siddall, R.; Taraschewski, H. , Parasites as accumulation indicators of heavy metal pollution. Parasitology Today 1999, 15, 16–21. [Google Scholar] [CrossRef]
- Sures, B.; Steiner, W.; Rydlo, M.; Taraschewski, H. , Concentrations of 17 elements in the zebra mussel (Dreissena polymorpha), in different tissues of perch (Perca fluviatilis), and in perch intestinal parasites (Acanthocephalus lucii) from the subalpine Lake Mondsee, Austria. Environmental Toxicology Chemistry: An International Journal, 1999; 18, 2574–2579. [Google Scholar]
- Sures, B.; Taraschewski, H.; Rydlo, M. , Intestinal fish parasites as heavy metal bioindicators: a comparison between Acanthocephalus lucii (Palaeacanthocephala) and the zebra mussel, Dreissena polymorpha. Bulletin of Environmental Contamination Toxicology 1997, 59, 14–21. [Google Scholar] [CrossRef]
- Sures, B. , Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective. Parasitology 2003, 126, S53–S60. [Google Scholar] [CrossRef]
- Sures, B. , Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends in parasitology 2004, 20, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Morais, A. M. Biodiversidade de parasitos da piranha vermelha Pygocentrus nattereri (Kner, 1858) (Characiformes; Serrasalmidae) e sua avaliação como bioindicadores na Amazônia Central. Instituto Nacional de Pesquisas da Amazônia, 2011.
- Morsy, K. A.-R., B.; Abdel-Ghaffar, F.; Mehlhorn, H.; Quraishy, S.; El-Mahdi, M.; Al-Ghamdi, A.; Mostafa, N. , First record of anisakid juveniles (Nematoda) in the European seabass Dicentrarchus labrax (family: Moronidae), and their role as bioindicators of heavy metal pollution. Parasitology Research 2011. [Google Scholar] [CrossRef]
- Blanar, C. A.; Munkittrick, K. R.; Houlahan, J.; MacLatchy, D. L.; Marcogliese, D. J. , Pollution and parasitism in aquatic animals: a meta-analysis of effect size. Aquatic Toxicology 2009, 93, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Falkenberg, J. M.; Golzio, J. E. S.; Pessanha, A.; Patrício, J.; Vendel, A. L.; Lacerda, A. C. , Gill parasites of fish and their relation to host and environmental factors in two estuaries in northeastern Brazil. Aquatic Ecology 2019, 53, 109–118. [Google Scholar] [CrossRef]
- Gilbert, B. M.; Avenant-Oldewage, A. , Parasites and pollution: the effectiveness of tiny organisms in assessing the quality of aquatic ecosystems, with a focus on Africa. Environmental Science Pollution Research 2017, 24, 18742–18769. [Google Scholar] [CrossRef]
- Igeh, P. C.; Gilbert, B. M.; Avenant-Oldewage, A. , Seasonal variance in water quality, trace metals and infection variables of Cichlidogyrus philander Douëllou, 1993 (Monogenea, Ancyrocephalidae) infecting the gills of Pseudocrenilabrus philander (Weber, 1897) in the Padda Dam, South Africa. African Journal of Aquatic Science 2021, 46, 88–99. [Google Scholar] [CrossRef]
- Lacerda, A. C. F.; Roumbedakis, K.; Junior, J. G. S. B.; Nuñer, A. P. O.; Petrucio, M. M.; Martins, M. L. , Fish parasites as indicators of organic pollution in southern Brazil. Journal of Helminthology 2018, 92, 322–331. [Google Scholar] [CrossRef]
- Poulin, R. , Meta-analysis of seasonal dynamics of parasite infections in aquatic ecosystems. International journal for parasitology 2020, 50, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Gomes, E. S. Efeitos da degradação ambiental sobre relações parasito hospedeiro em riachos urbanos na amazônia. Instituto Nacional de Pesquisas da Amazônia – INPA, 2020.
- Hine, P. M.; Kennedy, C. R. , Observations on the distribution, specificity and pathogenicity of the acanthocephalan Pomphorhynchus laevis (Müller). Journal of Fish Biology 1974, 6, 521–535. [Google Scholar] [CrossRef]
- Palm, H. W.; Poynton, S. L.; Rutledge, P. , Surface ultrastructure of plerocercoids of Bombycirhynchus sphyraenaicum (Pintner, 1930)(Cestoda: Trypanorhyncha). Parasitology Research 1998, 84, 195–204. [Google Scholar] [CrossRef]
- Rohde, K.; Hayward, C.; Heap, M. , Aspects of the ecology of metazoan ectoparasites of marine fishes. International journal for parasitology 1995, 25, 945–970. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).