Submitted:
23 August 2023
Posted:
24 August 2023
You are already at the latest version
Abstract
Keywords:
Background:
Genetic correlation between urate levels and cardiometabolic traits
Uricase activity: Fructose metabolism and energy storage
Regulating blood pressure: The role of salt and uric acid
Hyperuricemia and hypertension: A cause or effect?
Uric acid and neurodegenerative diseases: The antioxidant hypothesis
Hyperuricemia and innate immune system: Acquired protection?
Uric acid: A therapeutic target or disease bystander?
Future Perspectives
Disclosure
Acknowledgments
References
- Johnson, R.J., et al., Uric acid, evolution and primitive cultures. Semin Nephrol, 2005. 25(1): p. 3-8. [CrossRef]
- Alvarez-Lario, B. and J. Macarron-Vicente, Uric acid and evolution. Rheumatology (Oxford), 2010. 49(11): p. 2010-5. [CrossRef]
- Watanabe, S., et al., Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension, 2002. 40(3): p. 355-60. [CrossRef]
- Johnson, R.J., et al., Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts. J Intern Med, 2020. 287(3): p. 252-262. [CrossRef]
- Kratzer, J.T., et al., Evolutionary history and metabolic insights of ancient mammalian uricases. Proc Natl Acad Sci U S A, 2014. 111(10): p. 3763-8. [CrossRef]
- Wu, X.W., et al., Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol, 1992. 34(1): p. 78-84. [CrossRef]
- Li, Z., et al., Phylogenetic Articulation of Uric Acid Evolution in Mammals and How It Informs a Therapeutic Uricase. Mol Biol Evol, 2022. 39(1). [CrossRef]
- Ames, B.N., et al., Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A, 1981. 78(11): p. 6858-62. [CrossRef]
- Roman, Y.M., Moving the Needle in Gout Management: The Role of Culture, Diet, Genetics, and Personalized Patient Care Practices. Nutrients, 2022. 14(17): p. 3590. [CrossRef]
- San Gabriel, D.E.D. and J. Slark, The association of gout with an increased risk of hypertension and diabetes mellitus among stroke survivors in New Zealand: A cross-sectional study using routinely collected electronic health data. JRSM Cardiovasc Dis, 2019. 8: p. 2048004019863239. [CrossRef]
- Klemp, P., et al., Gout is on the increase in New Zealand. Ann Rheum Dis, 1997. 56(1): p. 22-6. [CrossRef]
- Roman, Y.M., The Daniel K. Inouye College of Pharmacy Scripts: Perspectives on the Epidemiology of Gout and Hyperuricemia. Hawaii J Med Public Health, 2019. 78(2): p. 71-76.
- Kolz, M., et al., Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet, 2009. 5(6): p. e1000504. [CrossRef]
- Kottgen, A., et al., Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet, 2013. 45(2): p. 145-54. [CrossRef]
- Alghubayshi, A., et al., Genetic assessment of hyperuricemia and gout in Asian, Native Hawaiian, and Pacific Islander subgroups of pregnant women: biospecimens repository cross-sectional study. BMC Rheumatol, 2022. 6(1): p. 1. [CrossRef]
- Butler, F., A. Alghubayshi, and Y. Roman, The Epidemiology and Genetics of Hyperuricemia and Gout across Major Racial Groups: A Literature Review and Population Genetics Secondary Database Analysis. J Pers Med, 2021. 11(3). [CrossRef]
- Tin, A., et al., Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet, 2019. 51(10): p. 1459-1474. [CrossRef]
- Reynolds, R.J., et al., Genetic correlations between traits associated with hyperuricemia, gout, and comorbidities. Eur J Hum Genet, 2021. 29(9): p. 1438-1445. [CrossRef]
- Singh, J.A. and J.D. Cleveland, Gout and the risk of incident atrial fibrillation in older adults: a study of US Medicare data. RMD Open, 2018. 4(2): p. e000712. [CrossRef]
- Yanyan Zhu, P., P. Bhavik J. Pandya, and M. Hyon K. Choi, DrPH, Comorbidities of Gout and Hyperuricemia in the US General Population: NHANES 2007-2008. The American Journal of Medicine, 2012. 125(7): p. 679-687. [CrossRef]
- Singh, J.A. and J.D. Cleveland, Gout is associated with a higher risk of chronic renal disease in older adults: a retrospective cohort study of U.S. Medicare population. BMC Nephrol, 2019. 20(1): p. 93. [CrossRef]
- Zhu, Y., B.J. Pandya, and H.K. Choi, Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum, 2011. 63(10): p. 3136-41. [CrossRef]
- Zhao, R., et al., Gout and risk of diabetes mellitus: meta-analysis of observational studies. Psychol Health Med, 2020. 25(8): p. 917-930. [CrossRef]
- Lyngdoh, T., et al., Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS One, 2012. 7(6): p. e39321. [CrossRef]
- Song 宋志林, Z., et al., Role of fructose and fructokinase in acute dehydration-induced vasopressin gene expression and secretion in mice. J Neurophysiol, 2017. 117(2): p. 646-654.
- Andres-Hernando, A., et al., Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b receptor. JCI Insight, 2021. 6(1). [CrossRef]
- Johnson, R.J., et al., Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes, 2013. 62(10): p. 3307-15. [CrossRef]
- Andres-Hernando, A., et al., Deletion of Fructokinase in the Liver or in the Intestine Reveals Differential Effects on Sugar-Induced Metabolic Dysfunction. Cell Metab, 2020. 32(1): p. 117-127 e3.
- Johnson, R.J., et al., Do thrifty genes exist? Revisiting uricase. Obesity (Silver Spring), 2022. 30(10): p. 1917-1926. [CrossRef]
- Grillo, A., et al., Sodium Intake and Hypertension. Nutrients, 2019. 11(9). [CrossRef]
- Mazzali, M., et al., Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol, 2002. 282(6): p. F991-7. [CrossRef]
- Mazzali, M., et al., Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension, 2001. 38(5): p. 1101-6. [CrossRef]
- Andrés, M., Gout and Cardiovascular Disease: Mechanisms, Risk Estimations, and the Impact of Therapies. Gout, Urate, and Crystal Deposition Disease, 2023. 1(3): p. 152-166. [CrossRef]
- Klauser, A.S., et al., Dual-Energy Computed Tomography Detection of Cardiovascular Monosodium Urate Deposits in Patients With Gout. JAMA Cardiol, 2019. 4(10): p. 1019-1028. [CrossRef]
- Wang, X., et al., High Level of Serum Uric Acid induced Monocyte Inflammation is Related to Coronary Calcium Deposition in the Middle-Aged and Elder Population of China: A five-year Prospective Cohort Study. J Inflamm Res, 2022. 15: p. 1859-1872. [CrossRef]
- Mills, K.T., A. Stefanescu, and J. He, The global epidemiology of hypertension. Nat Rev Nephrol, 2020. 16(4): p. 223-237. [CrossRef]
- Kuwabara, M., et al., Relationship between serum uric acid levels and hypertension among Japanese individuals not treated for hyperuricemia and hypertension. Hypertens Res, 2014. 37(8): p. 785-9. [CrossRef]
- Tatsumi, Y., et al., Hyperuricemia predicts the risk for developing hypertension independent of alcohol drinking status in men and women: the Saku study. Hypertens Res, 2020. 43(5): p. 442-449. [CrossRef]
- Vo, V., et al., Cardiovascular Risk Factors Among Asian Americans: Perspectives on the Role of Acculturation in Cardiovascular Diseases Health Disparities. J Immigr Minor Health, 2023. [CrossRef]
- Coronado, G., et al., Health Disparities of Cardiometabolic Disorders Among Filipino Americans: Implications for Health Equity and Community-Based Genetic Research. J Racial Ethn Health Disparities, 2022. 9(6): p. 2560-2567. [CrossRef]
- Yano, K., G. Rhoads, and A. Kagan, Epidemiology of serum uric acid among 8000 Japanese-American men in Hawaii. J Chronic Dis, 1977. 30(3): p. 171-84. [CrossRef]
- Shai, A., et al., Gout in young migrant Filipino women in Israel: a changing epidemiology. Case reports and review of the literature. Rheumatol Int, 2010. 30(12): p. 1685-7. [CrossRef]
- Roman, Y.M., et al., Cardiometabolic genomics and pharmacogenomics investigations in Filipino Americans: Steps towards precision health and reducing health disparities. Am Heart J Plus, 2022. 15: p. 100136. [CrossRef]
- Healey, L.A. and P.S. Bayani-Sioson, A defect in the renal excretion of uric acid in Filipinos. Arthritis Rheum, 1971. 14(6): p. 721-6. [CrossRef]
- Montoye, H.J. and W.M. Mikkelsen, Serum uric acid and achievement in high school. Arthritis Rheum, 1973. 16(3): p. 359-62. [CrossRef]
- Inouye, E., K.S. Park, and A. Asaka, Blood uric acid level and IQ: a study in twin families. Acta Genet Med Gemellol (Roma), 1984. 33(2): p. 237-42. [CrossRef]
- Kennett, K.F. and A.J. Cropley, Uric acid and divergent thinking: a possible relationship. Br J Psychol, 1975. 66(2): p. 175-80. [CrossRef]
- Lu, N., et al., Gout and the risk of Alzheimer’s disease: a population-based, BMI-matched cohort study. Ann Rheum Dis, 2016. 75(3): p. 547-51.
- Singh, J.A. and J.D. Cleveland, Gout and dementia in the elderly: a cohort study of Medicare claims. BMC Geriatr, 2018. 18(1): p. 281. [CrossRef]
- Zhou, Z., et al., Serum Uric Acid and the Risk of Dementia: A Systematic Review and Meta-Analysis. Front Aging Neurosci, 2021. 13: p. 625690. [CrossRef]
- McFarland, N.R., et al., Postmortem brain levels of urate and precursors in Parkinson’s disease and related disorders. Neurodegener Dis, 2013. 12(4): p. 189-98. [CrossRef]
- Fazlollahi, A., et al., Association between gout and the development of Parkinson’s disease: a systematic review and meta-analysis. BMC Neurol, 2022. 22(1): p. 383. [CrossRef]
- Tana, C., et al., Uric Acid and Cognitive Function in Older Individuals. Nutrients, 2018. 10(8). [CrossRef]
- Seifar, F., A.R. Dinasarapu, and H.A. Jinnah, Uric Acid in Parkinson’s Disease: What Is the Connection? Mov Disord, 2022. 37(11): p. 2173-2183.
- Roman, Y., Pathway for ascertaining the role of uric acid in neurodegenerative diseases. Alzheimers Dement (Amst), 2022. 14(1): p. e12329. [CrossRef]
- Gersch, C., et al., Reactions of peroxynitrite with uric acid: formation of reactive intermediates, alkylated products and triuret, and in vivo production of triuret under conditions of oxidative stress. Nucleosides Nucleotides Nucleic Acids, 2009. 28(2): p. 118-49. [CrossRef]
- Kanabrocki, E.L., et al., Altered circadian relationship between serum nitric oxide, carbon dioxide, and uric acid in multiple sclerosis. Chronobiol Int, 2004. 21(4-5): p. 739-58. [CrossRef]
- Torreilles, F., et al., Neurodegenerative disorders: the role of peroxynitrite. Brain Res Brain Res Rev, 1999. 30(2): p. 153-63. [CrossRef]
- Parkinson Study Group, S.-P.D.I., et al., Effect of Urate-Elevating Inosine on Early Parkinson Disease Progression: The SURE-PD3 Randomized Clinical Trial. JAMA, 2021. 326(10): p. 926-939.
- Simon, K.C., et al., Mendelian randomization of serum urate and parkinson disease progression. Ann Neurol, 2014. 76(6): p. 862-8.
- Miao, J., et al., The Single Nucleotide Polymorphism rs1014290 of the SLC2A9 Gene Is Associated with Uric Acid Metabolism in Parkinson’s Disease. Parkinsons Dis, 2017. 2017: p. 7184927. [CrossRef]
- Ye, B.S., et al., Does serum uric acid act as a modulator of cerebrospinal fluid Alzheimer’s disease biomarker related cognitive decline? Eur J Neurol, 2016. 23(5): p. 948-57.
- Chen, C., et al., High Blood Uric Acid Is Associated With Reduced Risks of Mild Cognitive Impairment Among Older Adults in China: A 9-Year Prospective Cohort Study. Front Aging Neurosci, 2021. 13: p. 747686. [CrossRef]
- Liu, M., et al., Relationship between serum uric acid level and mild cognitive impairment in Chinese community elderly. BMC Neurol, 2017. 17(1): p. 146. [CrossRef]
- Pellecchia, M.T., et al., Lower serum uric acid is associated with mild cognitive impairment in early Parkinson’s disease: a 4-year follow-up study. J Neural Transm (Vienna), 2016. 123(12): p. 1399-1402. [CrossRef]
- Vannorsdall, T.D., et al., Higher baseline serum uric acid is associated with poorer cognition but not rates of cognitive decline in women. Exp Gerontol, 2014. 60: p. 136-9. [CrossRef]
- Xue, L., et al., Low uric acid is a risk factor in mild cognitive impairment. Neuropsychiatr Dis Treat, 2017. 13: p. 2363-2367. [CrossRef]
- Latourte, A., T. Bardin, and P. Richette, Uric acid and cognitive decline: a double-edge sword? Curr Opin Rheumatol, 2018. 30(2): p. 183-187.
- Gao, B., et al., Association of serum uric acid with risk of stroke in US adults: A cross-sectional study from NHANES 1999-2020. J Stroke Cerebrovasc Dis, 2023. 32(8): p. 107206. [CrossRef]
- Zhang, M., et al., Association between uric acid and the prognosis of acute ischemic stroke: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis, 2021. 31(11): p. 3016-3023. [CrossRef]
- Nakamura, K., et al., Association between decreases in serum uric acid levels and unfavorable outcomes after ischemic stroke: A multicenter hospital-based observational study. PLoS One, 2023. 18(6): p. e0287721. [CrossRef]
- Bai, H., et al., Increased serum uric acid level is associated with better outcome after endovascular treatment for acute ischemic stroke-a prospective cohort study. Ann Transl Med, 2022. 10(20): p. 1111. [CrossRef]
- Gosling, A.L., E. Matisoo-Smith, and T.R. Merriman, Hyperuricaemia in the Pacific: why the elevated serum urate levels? Rheumatol Int, 2014. 34(6): p. 743-57.
- Ghaemi-Oskouie, F. and Y. Shi, The role of uric acid as an endogenous danger signal in immunity and inflammation. Curr Rheumatol Rep, 2011. 13(2): p. 160-6. [CrossRef]
- Roman, Y., M. Tiirikainen, and E. Prom-Wormley, The prevalence of the gout-associated polymorphism rs2231142 G>T in ABCG2 in a pregnant female Filipino cohort. Clin Rheumatol, 2020. 39(8): p. 2387-2392.
- Phipps-Green, A.J., et al., A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Maori, case and control sample sets. Hum Mol Genet, 2010. 19(24): p. 4813-9. [CrossRef]
- Oral, A., et al., Relationship Between Serum Uric Acid Levels and Nonalcoholic Fatty Liver Disease in Non-Obese Patients. Medicina (Kaunas), 2019. 55(9). [CrossRef]
- Kanbay, M., et al., Uric acid in metabolic syndrome: From an innocent bystander to a central player. Eur J Intern Med, 2016. 29: p. 3-8. [CrossRef]
- Soletsky, B. and D.I. Feig, Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension, 2012. 60(5): p. 1148-56. [CrossRef]
- Feig, D.I., B. Soletsky, and R.J. Johnson, Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA, 2008. 300(8): p. 924-32.
- Assadi, F., Allopurinol enhances the blood pressure lowering effect of enalapril in children with hyperuricemic essential hypertension. J Nephrol, 2014. 27(1): p. 51-6. [CrossRef]
- Kanbay, M., et al., Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearence, and proteinuria in patients with normal renal functions. Int Urol Nephrol, 2007. 39(4): p. 1227-33. [CrossRef]
- Kanbay, M., et al., A randomized study of allopurinol on endothelial function and estimated glomular filtration rate in asymptomatic hyperuricemic subjects with normal renal function. Clin J Am Soc Nephrol, 2011. 6(8): p. 1887-94. [CrossRef]
- Gaffo, A.L., et al., Effect of Serum Urate Lowering With Allopurinol on Blood Pressure in Young Adults: A Randomized, Controlled, Crossover Trial. Arthritis Rheumatol, 2021. 73(8): p. 1514-1522. [CrossRef]
- McMullan, C.J., et al., Effect of Uric Acid Lowering on Renin-Angiotensin-System Activation and Ambulatory BP: A Randomized Controlled Trial. Clin J Am Soc Nephrol, 2017. 12(5): p. 807-816. [CrossRef]
- Ortiz-Uriarte, M., et al., Urate-Lowering Therapy Use among US Adults with Gout and the Relationship between Patients’ Gout Treatment Status and Associated Comorbidities. Rheumato, 2023. 3(1): p. 74-85. [CrossRef]
- Parkinson Study Group, S.-P.D.I., et al., Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol, 2014. 71(2): p. 141-50.
- Nicholson, K., et al., Pilot trial of inosine to elevate urate levels in amyotrophic lateral sclerosis. Ann Clin Transl Neurol, 2018. 5(12): p. 1522-1533. [CrossRef]
- Walk, D., et al., Randomized trial of inosine for urate elevation in amyotrophic lateral sclerosis. Muscle Nerve, 2023. 67(5): p. 378-386. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
