Submitted:
19 August 2023
Posted:
22 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Clinical Spectrum of Cognitive Impairment in Parkinson’s Disease
2.1. Subjective Cognitive Decline (SCD)
2.2. Mild Cognitive Impairment (MCI)
2.3. Parkinson' s Disease Dementia (PDD)
4. Novel Pharmaceutical Treatments under Investigation
4.1. Ceftriaxone
4.2. Ambroxol
4.3. Intranasal Insulin
4.4. Nilotinib
4.5. Atomoxetine
4.6. Mevidalen
4.7. Blarcamesine
4.8. Prasinezumab
4.9. SYN120
4.10. ENT-01
4.11. Other Agents in Clinical Trials for PDD
4.12. Agents for PDD under Investigation: An Update on Preclinical Evidence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jankovic, J. Parkinson's disease: Clinical features and diagnosis. Journal of neurology, neurosurgery, and psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef] [PubMed]
- O'Sullivan, S.S.; Williams, D.R.; Gallagher, D.A.; Massey, L.A.; Silveira-Moriyama, L.; Lees, A.J. Nonmotor symptoms as presenting complaints in Parkinson's disease: A clinicopathological study. Movement disorders : Official journal of the Movement Disorder Society 2008, 23, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Non-motor features of Parkinson disease. Nature reviews. Neuroscience 2017, 18, 435–450. [Google Scholar] [CrossRef]
- Zhang, Q.; Aldridge, G.M.; Narayanan, N.S.; Anderson, S.W.; Uc, E.Y. Approach to Cognitive Impairment in Parkinson's Disease. Neurotherapeutics : The journal of the American Society for Experimental NeuroTherapeutics 2020, 17, 1495–1510. [Google Scholar] [CrossRef]
- Szewczyk-Krolikowski, K.; Tomlinson, P.; Nithi, K.; Wade-Martins, R.; Talbot, K.; Ben-Shlomo, Y.; Hu, M.T. The influence of age and gender on motor and non-motor features of early Parkinson's disease: Initial findings from the Oxford Parkinson Disease Center (OPDC) discovery cohort. Parkinsonism & related disorders 2014, 20, 99–105. [Google Scholar] [CrossRef]
- Smith, C.; Malek, N.; Grosset, K.; Cullen, B.; Gentleman, S.; Grosset, D.G. Neuropathology of dementia in patients with Parkinson's disease: A systematic review of autopsy studies. Journal of neurology, neurosurgery, and psychiatry 2019, 90, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Chahine, L.M.; Xie, S.X.; Simuni, T.; Tran, B.; Postuma, R.; Amara, A.; Oertel, W.H.; Iranzo, A.; Scordia, C.; Fullard, M.; et al. Longitudinal changes in cognition in early Parkinson's disease patients with REM sleep behavior disorder. Parkinsonism & related disorders 2016, 27, 102–106. [Google Scholar] [CrossRef]
- Oedekoven, C.; Egeri, L.; Jessen, F.; Wagner, M.; Dodel, R. Subjective cognitive decline in idiopathic Parkinson s disease: A systematic review. Ageing research reviews 2022, 74, 101508. [Google Scholar] [CrossRef]
- Nandipati, S.; Litvan, I. Environmental Exposures and Parkinson's Disease. International journal of environmental research and public health 2016, 13. [Google Scholar] [CrossRef]
- Alves, G.; Lange, J.; Blennow, K.; Zetterberg, H.; Andreasson, U.; Forland, M.G.; Tysnes, O.B.; Larsen, J.P.; Pedersen, K.F. CSF Abeta42 predicts early-onset dementia in Parkinson disease. Neurology 2014, 82, 1784–1790. [Google Scholar] [CrossRef]
- Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson disease-associated cognitive impairment. Nature reviews. Disease primers 2021, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.G.; Sieg, E. Cognitive Impairment and Dementia in Parkinson Disease. Clinics in geriatric medicine 2020, 36, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Koster, D.P.; Higginson, C.I.; MacDougall, E.E.; Wheelock, V.L.; Sigvardt, K.A. Subjective Cognitive Complaints in Parkinson Disease Without Dementia: A Preliminary Study. Applied neuropsychology. Adult 2015, 22, 287–292. [Google Scholar] [CrossRef]
- Kjeldsen, P.L.; Damholdt, M.F. Subjective cognitive complaints in patients with Parkinson's disease. Acta neurologica Scandinavica 2019, 140, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Jongsiriyanyong, S.; Limpawattana, P. Mild Cognitive Impairment in Clinical Practice: A Review Article. American journal of Alzheimer's disease and other dementias 2018, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Kurz, M.W. The epidemiology of dementia associated with Parkinson's disease. Brain pathology 2010, 20, 633–639. [Google Scholar] [CrossRef]
- Yu, R.L.; Wu, R.M. Mild cognitive impairment in patients with Parkinson's disease: An updated mini-review and future outlook. Frontiers in aging neuroscience 2022, 14, 943438. [Google Scholar] [CrossRef]
- Palavra, N.C.; Naismith, S.L.; Lewis, S.J. Mild cognitive impairment in Parkinson's disease: A review of current concepts. Neurology research international 2013, 2013, 576091. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Dong, S.; Tao, Y.; Huo, Y.; Zhou, Z.; Huang, W.; Qu, H.; Liu, J.; Chen, Y.; Xu, Z.; et al. Metabolic syndrome contributes to cognitive impairment in patients with Parkinson's disease. Parkinsonism & related disorders 2018, 55, 68–74. [Google Scholar] [CrossRef]
- Wojtala, J.; Heber, I.A.; Neuser, P.; Heller, J.; Kalbe, E.; Rehberg, S.P.; Storch, A.; Linse, K.; Schneider, C.; Graber, S.; et al. Cognitive decline in Parkinson's disease: The impact of the motor phenotype on cognition. Journal of neurology, neurosurgery, and psychiatry 2019, 90, 171–179. [Google Scholar] [CrossRef]
- Delgado-Alvarado, M.; Gago, B.; Navalpotro-Gomez, I.; Jimenez-Urbieta, H.; Rodriguez-Oroz, M.C. Biomarkers for dementia and mild cognitive impairment in Parkinson's disease. Movement disorders : Official journal of the Movement Disorder Society 2016, 31, 861–881. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.G.; Holden, S.; Ouyang, B.; Bernard, B.; Goetz, C.G.; Stebbins, G.T. Diagnosing PD-MCI by MDS Task Force criteria: How many and which neuropsychological tests? Movement disorders : Official journal of the Movement Disorder Society 2015, 30, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Melzer, T.R.; Watts, R.; MacAskill, M.R.; Pitcher, T.L.; Livingston, L.; Keenan, R.J.; Dalrymple-Alford, J.C.; Anderson, T.J. White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology 2013, 80, 1841–1849. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, X.; Chen, H.; Feng, T.; Wang, H. Abnormal Spontaneous Brain Activity in Early Parkinson's Disease With Mild Cognitive Impairment: A Resting-State fMRI Study. Frontiers in physiology 2018, 9, 1093. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.C.; Iop, R.D.R.; de Oliveira, L.C.; Boll, A.M.; de Alvarenga, J.G.S.; Gutierres Filho, P.J.B.; de Melo, L.; Xavier, A.J.; da Silva, R. Effects of physical exercise programs on cognitive function in Parkinson's disease patients: A systematic review of randomized controlled trials of the last 10 years. PLoS ONE 2018, 13, e0193113. [Google Scholar] [CrossRef]
- Cammisuli, D.M.; Cammisuli, S.M.; Fusi, J.; Franzoni, F.; Pruneti, C. Parkinson's Disease-Mild Cognitive Impairment (PD-MCI): A Useful Summary of Update Knowledge. Frontiers in aging neuroscience 2019, 11, 303. [Google Scholar] [CrossRef] [PubMed]
- Hinson, V.K.; Delambo, A.; Elm, J.; Turner, T. A Randomized Clinical Trial of Atomoxetine for Mild Cognitive Impairment in Parkinson's Disease. Movement disorders clinical practice 2017, 4, 416–423. [Google Scholar] [CrossRef]
- Perez-Lloret, S.; Peralta, M.C.; Barrantes, F.J. Pharmacotherapies for Parkinson's disease symptoms related to cholinergic degeneration. Expert opinion on pharmacotherapy 2016, 17, 2405–2415. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.H.; Wang, P.P.; Song, Y.X.; Wang, J.H. Cholinesterase inhibitors and memantine for Parkinson's disease dementia and Lewy body dementia: A meta-analysis. Experimental and therapeutic medicine 2019, 17, 1611–1624. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, J.; Shang, H. Meta-analysis of risk factors for Parkinson's disease dementia. Translational neurodegeneration 2016, 5, 11. [Google Scholar] [CrossRef]
- Emre, M. Clinical features, pathophysiology and treatment of dementia associated with Parkinson's disease. Handbook of clinical neurology 2007, 83, 401–419. [Google Scholar] [CrossRef]
- Harhangi, B.S.; de Rijk, M.C.; van Duijn, C.M.; Van Broeckhoven, C.; Hofman, A.; Breteler, M.M. APOE and the risk of PD with or without dementia in a population-based study. Neurology 2000, 54, 1272–1276. [Google Scholar] [CrossRef] [PubMed]
- Rub, U.; Del Tredici, K.; Schultz, C.; Ghebremedhin, E.; de Vos, R.A.; Jansen Steur, E.; Braak, H. Parkinson's disease: The thalamic components of the limbic loop are severely impaired by alpha-synuclein immunopositive inclusion body pathology. Neurobiology of aging 2002, 23, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Emre, M. What causes mental dysfunction in Parkinson's disease? Movement disorders : Official journal of the Movement Disorder Society 2003, 18 (Suppl. S6), S63–S71. [Google Scholar] [CrossRef] [PubMed]
- Emre, M.; Aarsland, D.; Albanese, A.; Byrne, E.J.; Deuschl, G.; De Deyn, P.P.; Durif, F.; Kulisevsky, J.; van Laar, T.; Lees, A.; et al. Rivastigmine for dementia associated with Parkinson's disease. The New England journal of medicine 2004, 351, 2509–2518. [Google Scholar] [CrossRef]
- Seppi, K.; Ray Chaudhuri, K.; Coelho, M.; Fox, S.H.; Katzenschlager, R.; Perez Lloret, S.; Weintraub, D.; Sampaio, C.; the collaborators of the Parkinson's Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine, C. Update on treatments for nonmotor symptoms of Parkinson's disease-an evidence-based medicine review. Movement disorders : Official journal of the Movement Disorder Society 2019, 34, 180–198. [Google Scholar] [CrossRef]
- Tai, C.H.; Bellesi, M.; Chen, A.C.; Lin, C.L.; Li, H.H.; Lin, P.J.; Liao, W.C.; Hung, C.S.; Schwarting, R.K.; Ho, Y.J. A new avenue for treating neuronal diseases: Ceftriaxone, an old antibiotic demonstrating behavioral neuronal effects. Behavioural brain research 2019, 364, 149–156. [Google Scholar] [CrossRef]
- Hsieh, M.H.; Meng, W.Y.; Liao, W.C.; Weng, J.C.; Li, H.H.; Su, H.L.; Lin, C.L.; Hung, C.S.; Ho, Y.J. Ceftriaxone reverses deficits of behavior and neurogenesis in an MPTP-induced rat model of Parkinson's disease dementia. Brain research bulletin 2017, 132, 129–138. [Google Scholar] [CrossRef]
- Huang, C.K.; Chang, Y.T.; Amstislavskaya, T.G.; Tikhonova, M.A.; Lin, C.L.; Hung, C.S.; Lai, T.J.; Ho, Y.J. Synergistic effects of ceftriaxone and erythropoietin on neuronal and behavioral deficits in an MPTP-induced animal model of Parkinson's disease dementia. Behavioural brain research 2015, 294, 198–207. [Google Scholar] [CrossRef]
- Yang, S.Y.; Taanman, J.W.; Gegg, M.; Schapira, A.H.V. Ambroxol reverses tau and alpha-synuclein accumulation in a cholinergic N370S GBA1 mutation model. Human molecular genetics 2022, 31, 2396–2405. [Google Scholar] [CrossRef]
- Novak, P.; Pimentel Maldonado, D.A.; Novak, V. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: A double-blinded placebo-controlled pilot study. PLoS ONE 2019, 14, e0214364. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, X.; Li, S.; Wang, H.; Zhang, X.; Liu, L.; Xie, A. Intranasal insulin ameliorates cognitive impairment in a rat model of Parkinson's disease through Akt/GSK3beta signaling pathway. Life sciences 2020, 259, 118159. [Google Scholar] [CrossRef]
- Pagan, F.L.; Wilmarth, B.; Torres-Yaghi, Y.; Hebron, M.L.; Mulki, S.; Ferrante, D.; Matar, S.; Ahn, J.; Moussa, C. Long-Term Safety and Clinical Effects of Nilotinib in Parkinson's Disease. Movement disorders : Official journal of the Movement Disorder Society 2021, 36, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, X.; Zheng, L.; Mo, J.; Jin, X.; Bao, Y. Nilotinib inhibits microglia-mediated neuroinflammation to protect against dopaminergic neuronal death in Parkinson's disease models. International immunopharmacology 2021, 99, 108025. [Google Scholar] [CrossRef] [PubMed]
- Zweig, R.M.; Cardillo, J.E.; Cohen, M.; Giere, S.; Hedreen, J.C. The locus ceruleus and dementia in Parkinson's disease. Neurology 1993, 43, 986–991. [Google Scholar] [CrossRef]
- Goldman, J.G.; Holden, S. Treatment of psychosis and dementia in Parkinson's disease. Current treatment options in neurology 2014, 16, 281. [Google Scholar] [CrossRef]
- Weintraub, D.; Mavandadi, S.; Mamikonyan, E.; Siderowf, A.D.; Duda, J.E.; Hurtig, H.I.; Colcher, A.; Horn, S.S.; Nazem, S.; Ten Have, T.R.; et al. Atomoxetine for depression and other neuropsychiatric symptoms in Parkinson disease. Neurology 2010, 75, 448–455. [Google Scholar] [CrossRef]
- Marsh, L.; Biglan, K.; Gerstenhaber, M.; Williams, J.R. Atomoxetine for the treatment of executive dysfunction in Parkinson's disease: A pilot open-label study. Movement disorders : Official journal of the Movement Disorder Society 2009, 24, 277–282. [Google Scholar] [CrossRef]
- Sun, C.; Armstrong, M.J. Treatment of Parkinson's Disease with Cognitive Impairment: Current Approaches and Future Directions. Behavioral sciences 2021, 11. [Google Scholar] [CrossRef]
- Svensson, K.A.; Hao, J.; Bruns, R.F. Positive allosteric modulators of the dopamine D1 receptor: A new mechanism for the treatment of neuropsychiatric disorders. Advances in pharmacology 2019, 86, 273–305. [Google Scholar] [CrossRef]
- Biglan, K.; Munsie, L.; Svensson, K.A.; Ardayfio, P.; Pugh, M.; Sims, J.; Brys, M. Safety and Efficacy of Mevidalen in Lewy Body Dementia: A Phase 2, Randomized, Placebo-Controlled Trial. Movement disorders : Official journal of the Movement Disorder Society 2022, 37, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, T.; Bhatt, L.K. Targeting Sigma-1 Receptor: A Promising Strategy in the Treatment of Parkinson's Disease. Neurochemical research 2023, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Schenk, D.B.; Koller, M.; Ness, D.K.; Griffith, S.G.; Grundman, M.; Zago, W.; Soto, J.; Atiee, G.; Ostrowitzki, S.; Kinney, G.G. First-in-human assessment of PRX002, an anti-alpha-synuclein monoclonal antibody, in healthy volunteers. Movement disorders : Official journal of the Movement Disorder Society 2017, 32, 211–218. [Google Scholar] [CrossRef]
- Jankovic, J.; Goodman, I.; Safirstein, B.; Marmon, T.K.; Schenk, D.B.; Koller, M.; Zago, W.; Ness, D.K.; Griffith, S.G.; Grundman, M.; et al. Safety and Tolerability of Multiple Ascending Doses of PRX002/RG7935, an Anti-alpha-Synuclein Monoclonal Antibody, in Patients With Parkinson Disease: A Randomized Clinical Trial. JAMA neurology 2018, 75, 1206–1214. [Google Scholar] [CrossRef]
- Fernandez, H.H.; Weintraub, D.; Macklin, E.; Litvan, I.; Schwarzschild, M.A.; Eberling, J.; Videnovic, A.; Kenney, C.J.; Parkinson Study Group, S.I. Safety, tolerability, and preliminary efficacy of SYN120, a dual 5-HT6/5-HT2A antagonist, for the treatment of Parkinson disease dementia: A randomized, controlled, proof-of-concept trial. Parkinsonism & related disorders 2023, 105511. [Google Scholar] [CrossRef]
- Hauser, R.A.; Sutherland, D.; Madrid, J.A.; Rol, M.A.; Frucht, S.; Isaacson, S.; Pagan, F.; Maddux, B.N.; Li, G.; Tse, W.; et al. Targeting neurons in the gastrointestinal tract to treat Parkinson's disease. Clinical parkinsonism & related disorders 2019, 1, 2–7. [Google Scholar] [CrossRef]
- Barth, A.L.; Schneider, J.S.; Johnston, T.H.; Hill, M.P.; Brotchie, J.M.; Moskal, J.R.; Cearley, C.N. NYX-458 Improves Cognitive Performance in a Primate Parkinson's Disease Model. Movement disorders : Official journal of the Movement Disorder Society 2020, 35, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.L.; Reda, S.M.; Setti, S.E.; Taylor, R.W.; Berthiaume, A.A.; Walker, W.E.; Wu, W.; Moebius, H.J.; Church, K.J. Fosgonimeton, a Novel Positive Modulator of the HGF/MET System, Promotes Neurotrophic and Procognitive Effects in Models of Dementia. Neurotherapeutics : The journal of the American Society for Experimental NeuroTherapeutics 2023, 20, 431–451. [Google Scholar] [CrossRef]
- Nie, K.; Li, Y.; Zhang, J.; Gao, Y.; Qiu, Y.; Gan, R.; Zhang, Y.; Wang, L. Distinct Bile Acid Signature in Parkinson's Disease With Mild Cognitive Impairment. Frontiers in neurology 2022, 13, 897867. [Google Scholar] [CrossRef]
- Huang, R.; Gao, Y.; Chen, J.; Duan, Q.; He, P.; Zhang, J.; Huang, H.; Zhang, Q.; Ma, G.; Zhang, Y.; et al. TGR5 Agonist INT-777 Alleviates Inflammatory Neurodegeneration in Parkinson's Disease Mouse Model by Modulating Mitochondrial Dynamics in Microglia. Neuroscience 2022, 490, 100–119. [Google Scholar] [CrossRef]
- Holanda, V.A.D.; Didonet, J.J.; Costa, M.B.B.; do Nascimento Rangel, A.H.; da Silva, E.D., Jr.; Gavioli, E.C. Neuropeptide S Receptor as an Innovative Therapeutic Target for Parkinson Disease. Pharmaceuticals 2021, 14. [Google Scholar] [CrossRef]
- Ozkan, A.; Bulbul, M.; Derin, N.; Sinen, O.; Akcay, G.; Parlak, H.; Aydin Aslan, M.; Agar, A. Neuropeptide-S affects cognitive impairment and depression-like behavior on MPTP induced experimental mouse model of Parkinson's disease. Turkish journal of medical sciences 2021, 51, 3126–3135. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Wang, J. Brain-derived neurotrophic factor attenuates cognitive impairment and motor deficits in a mouse model of Parkinson's disease. Brain and behavior 2021, 11, e2251. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Liu, W.; Song, S.; Fu, J.; Hayashi, T.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Ikejima, T. Oral Administration of Silibinin Ameliorates Cognitive Deficits of Parkinson's Disease Mouse Model by Restoring Mitochondrial Disorders in Hippocampus. Neurochemical research 2021, 46, 2317–2332. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Yu, L.; Li, Y.; Guo, H.; Zhai, Q.; Chen, W.; Tian, F. Meta-analysis of randomized controlled trials of the effects of probiotics in Parkinson's disease. Food & function 2023, 14, 3406–3422. [Google Scholar] [CrossRef]
- Ishii, T.; Furuoka, H.; Kaya, M.; Kuhara, T. Oral Administration of Probiotic Bifidobacterium breve Improves Facilitation of Hippocampal Memory Extinction via Restoration of Aberrant Higher Induction of Neuropsin in an MPTP-Induced Mouse Model of Parkinson's Disease. Biomedicines 2021, 9. [Google Scholar] [CrossRef]
- Castelli, V.; d'Angelo, M.; Lombardi, F.; Alfonsetti, M.; Antonosante, A.; Catanesi, M.; Benedetti, E.; Palumbo, P.; Cifone, M.G.; Giordano, A.; et al. Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson's disease models. Aging 2020, 12, 4641–4659. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Choe, K.; Lee, H.J.; Park, T.J.; Kim, M.O. Neuroprotective effects of osmotin in Parkinson's disease-associated pathology via the AdipoR1/MAPK/AMPK/mTOR signaling pathways. Journal of biomedical science 2023, 30, 66. [Google Scholar] [CrossRef]
- Cheng, C.; Zhu, X. Cordycepin mitigates MPTP-induced Parkinson's disease through inhibiting TLR/NF-kappaB signaling pathway. Life sciences 2019, 223, 120–127. [Google Scholar] [CrossRef]
- Huang, S.Y.; Su, Z.Y.; Han, Y.Y.; Liu, L.; Shang, Y.J.; Mai, Z.F.; Zeng, Z.W.; Li, C.H. Cordycepin improved the cognitive function through regulating adenosine A(2A) receptors in MPTP induced Parkinson's disease mice model. Phytomedicine : International journal of phytotherapy and phytopharmacology 2023, 110, 154649. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Y.; Wang, Q.; Zhang, J.; Sheng, X.; Zheng, L.; Wang, Y. Huperzine A injection ameliorates motor and cognitive abnormalities via regulating multiple pathways in a murine model of Parkinson's disease. European journal of pharmacology 2023, 956, 175970. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Ma, J.; Mu, D.; Li, B.; Lian, B.; Sun, C. FGF21 Protects Dopaminergic Neurons in Parkinson's Disease Models Via Repression of Neuroinflammation. Neurotoxicity research 2020, 37, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, W.; Deng, P.; Wang, X.; Zhu, L.; Zhao, L.; Li, C.; Gao, H. Fibroblast growth factor 21 ameliorates behavior deficits in Parkinson's disease mouse model via modulating gut microbiota and metabolic homeostasis. CNS neuroscience & therapeutics 2023. [Google Scholar] [CrossRef]
- Ding, W.; Lin, H.; Hong, X.; Ji, D.; Wu, F. Poloxamer 188-mediated anti-inflammatory effect rescues cognitive deficits in paraquat and maneb-induced mouse model of Parkinson's disease. Toxicology 2020, 436, 152437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Liu, Y.; Kang, X.P.; Dou, C.Y.; Zhuo, R.G.; Huang, S.Q.; Peng, L.; Wen, L. Ginsenoside Rb1 confers neuroprotection via promotion of glutamate transporters in a mouse model of Parkinson's disease. Neuropharmacology 2018, 131, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Meng, X.; Liu, Y.; Zhang, X.; Zhang, Y. Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the alpha-synuclein/PSD-95 pathway. Aging 2019, 11, 1934–1964. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bai, L.; Zhang, S.; Zhou, X.; Li, Y.; Bai, J. Trx-1 ameliorates learning and memory deficits in MPTP-induced Parkinson's disease model in mice. Free radical biology & medicine 2018, 124, 380–387. [Google Scholar] [CrossRef]
- Yang, J.S.; Wu, X.H.; Yu, H.G.; Teng, L.S. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease dementia in rats. Inflammopharmacology 2017, 25, 471–484. [Google Scholar] [CrossRef]
- Cummins, L.; Cates, M.E. Istradefylline: A novel agent in the treatment of "off" episodes associated with levodopa/carbidopa use in Parkinson disease. The mental health clinician 2022, 12, 32–36. [Google Scholar] [CrossRef]
- Ko, W.K.D.; Camus, S.M.; Li, Q.; Yang, J.; McGuire, S.; Pioli, E.Y.; Bezard, E. An evaluation of istradefylline treatment on Parkinsonian motor and cognitive deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque models. Neuropharmacology 2016, 110, 48–58. [Google Scholar] [CrossRef]
- Savall, A.S.P.; Fidelis, E.M.; de Mello, J.D.; Quines, C.B.; Denardin, C.C.; Marques, L.S.; Klann, I.P.; Nogueira, C.W.; Sampaio, T.B.; Pinton, S. Neuroprotective effect of Eugenia uniflora against intranasal MPTP-induced memory impairments in rats: The involvement of pro-BDNF/p75(NTR) pathway. Life sciences 2023, 324, 121711. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
