Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

De Novo Assembly of Venom Gland Transcriptome of Tropidolaemus wagleri (Temple Pit Viper, Malaysia) and Insights into the Origin of Its Major Toxin, Waglerin

Version 1 : Received: 6 August 2023 / Approved: 10 August 2023 / Online: 10 August 2023 (09:54:50 CEST)

A peer-reviewed article of this Preprint also exists.

Tan, C.H.; Tan, K.Y.; Tan, N.H. De Novo Assembly of Venom Gland Transcriptome of Tropidolaemus wagleri (Temple Pit Viper, Malaysia) and Insights into the Origin of Its Major Toxin, Waglerin. Toxins 2023, 15, 585. Tan, C.H.; Tan, K.Y.; Tan, N.H. De Novo Assembly of Venom Gland Transcriptome of Tropidolaemus wagleri (Temple Pit Viper, Malaysia) and Insights into the Origin of Its Major Toxin, Waglerin. Toxins 2023, 15, 585.

Abstract

The venom proteome of Temple Pit Viper (Tropidolaemus wagleri) is unique among pit vipers, characterized by a high abundance of a neurotoxic peptide, waglerin. To further explore the genetic diversity of its toxins, the present study de novo assembled the venom gland transcriptome of T. wagleri from west Malaysia. Among the 15 toxin gene families discovered, gene annotation and expression analysis reveal the dominating trend of bradykinin-potentiating peptide/angiotensin-converting enzyme inhibitor-C-type natriuretic peptide (BPP/ACEI-CNP, 76.19% of all-toxin transcription) in the transcriptome, followed by P-III snake venom metalloproteases (13.91%) and other toxins. The transcript TwBNP01 of BPP/ACEI-CNP represents a large precursor gene (209 amino acid residues) containing the coding region for waglerin (24 residues). TwBNP01 shows substantial sequence variations from the corresponding genes of its sister species, T. subannulatus of Northern Philippines, and other viperid species which diversely code for proline-rich small peptides such as bradykinin-potentiating peptides (BPPs). The waglerin/waglerin-like peptides, BPPs and azemiopsin are proline-rich, evolving de novo from multiple hyper-mutatable propeptide regions within the orthologous BPP/ACEI-CNP genes. Neofunctionalization of the peptides results in phylogenetic constraints consistent with a phenotypic dichotomy, where Tropidolaemus spp. and Azemiops feae convergently evolve a neurotoxic trait while vasoactive BPPs evolve only in other species.

Keywords

transcriptomics; venomics; Wagler’s Pit Viper

Subject

Biology and Life Sciences, Life Sciences

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.