Submitted:
04 August 2023
Posted:
08 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods and Materials
2.1. Study population
2.2. Data on sweetened soda and ASB consumption and dietary patterns
2.3. Assessment of NAFLD and NASH
2.4. Covariates
2.5. BMI and clinical measurements
2.6. Statistical analysis
3. Results
4. Discussion
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- American Liver, F. NASH Causes & Risk Factors. 2022.
- Kim, D.; Kim, W.R.; Kim, H.J.; Therneau, T.M. Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology (Baltimore, Md.) 2013, 57, 1357–1365. [Google Scholar] [CrossRef]
- The Nash Education, P. How Prevalent is NASH? 2022.
- National Institute of, D. ; Digestive; Kidney, D. Definitions & Facts of NAFLD & NASH. 2021.
- American Liver, F. Nonalcoholic Fatty Liver Disease (NAFLD). 2023.
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P. , et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology, 2023; 10.1097/HEP.0000000000000520. [Google Scholar] [CrossRef]
- Papatheodoridi, M.; Cholongitas, E. Diagnosis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Concepts. Current pharmaceutical design 2019, 24. [Google Scholar] [CrossRef]
- Singh, S.; Allen, A.M.; Wang, Z.; Prokop, L.J.; Murad, M.H.; Loomba, R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association 2015, 13, 643–654.e649. [Google Scholar] [CrossRef]
- Duell, P.B.; Welty, F.K.; Miller, M.; Chait, A.; Hammond, G.; Ahmad, Z.; Cohen, D.E.; Horton, J.D.; Pressman, G.S.; Toth, P.P. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association. Arteriosclerosis, thrombosis, and vascular biology 2022, 42, e168–e185. [Google Scholar] [CrossRef]
- Dietrich, P.; Hellerbrand, C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Practice & Research Clinical Gastroenterology, 2014. [Google Scholar]
- Kim, H.; Lee, D.S.; An, T.H.; Park, H.-J.; Kim, W.K.; Bae, K.-H.; Oh, K.-J. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. International Journal of Molecular Sciences 2021, 22, 4495–4495. [Google Scholar] [CrossRef]
- Organization, W.H. Obesity and overweight. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 5 May 2023).
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. Journal of hepatology 2017, 67, 829–846. [Google Scholar] [CrossRef]
- Semmler, G.; Datz, C.; Reiberger, T.; Trauner, M. Diet and exercise in NAFLD/NASH: Beyond the obvious. Liver International 2021, 41, 2249–2268. [Google Scholar] [CrossRef]
- Grand Review, R. Carbonated Soft Drink Market Size, Share & Trends Analysis Report By Flavor (Cola, Citrus), By Distribution Channel (Hypermarkets, Supermarkets & Mass Merchandisers, Online Stores & D2C), And Segment Forecasts, 2021 - 2028. 2021.
- Meng, Y.; Li, S.; Khan, J.; Dai, Z.; Li, C.; Hu, X.; Shen, Q.; Xue, Y. Sugar- and Artificially Sweetened Beverages Consumption Linked to Type 2 Diabetes, Cardiovascular Diseases, and All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutrients 2021, 13, 2636–2636. [Google Scholar] [CrossRef]
- Chhimwal, J.; Patial, V.; Padwad, Y. Beverages and Non-alcoholic fatty liver disease (NAFLD): Think before you drink. Clinical Nutrition 2021, 40, P2508–P2519. [Google Scholar] [CrossRef]
- Abid, A.; Taha, O.; Nseir, W.; Farah, R.; Grosovski, M.; Assy, N. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. Journal of hepatology 2009, 918–924. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Li, Z.; Wai Kei Lam, C.; Xiao, Y.; Wu, Q.; Zhang, W. Consumption of Sugar-Sweetened Beverages Has a Dose-Dependent Effect on the Risk of Non-Alcoholic Fatty Liver Disease: An Updated Systematic Review and Dose-Response Meta-Analysis. International Journal of Environmental Research and Public Health 2019, 16, 2192–2192. [Google Scholar] [CrossRef]
- Lange, N.F.; Radu, P.; Dufour, J.F. Prevention of NAFLD-associated HCC: Role of Lifestyle and chemoprevention. Journal of hepatology 2021, 75, 1217–1227. [Google Scholar] [CrossRef]
- Vos, M.B.; Colvin, R.; Belt, P.; Molleston, J.P.; Murray, K.F.; Rosenthal, P. Correlation of vitamin E, uric acid, and diet composition with histologic features of pediatric NAFLD. Journal of Pediatric Gastroenterology 2012, 90–96. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Nitzan-Kaluski, D.; Halpern, Z.; Oren, R. Prevalence of primary non-alcoholic fatty liver disease in a population-based study and its association with biochemical and anthropometric measures. Liver International 2006, 856–863. [Google Scholar] [CrossRef]
- Schwimmer, J.; Ugalde-Nicalo, P.; Welsh, J. Effect of a Low Free Sugar Diet vs Usual Diet on Nonalcoholic Fatty Liver Disease in Adolescent Boys A Randomized Clinical Trial. Journal of the American Medical Association 2019, 321, 256–265. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Thongprayoon, C.; Edmonds, P.J.; Cheungpasitporn, W. Associations of sugar- and artificially sweetened soda with nonalcoholic fatty liver disease: a systematic review and meta-analysis. International Journal of Medicine 2015, 109, 461–466. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Rother, K.I. Sucralose, a synthetic organochlorine sweetener: overview of biological issues. Journal of Toxicology and Environmental Health 2013, 16, 399–451. [Google Scholar] [CrossRef]
- Ma, J.; Fox, C.; Jacques, P.; Speliotes, E.; Hoffmann, U.; Smith, C.; Saltzman, E.; McKeown, N. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts. Journal of Hepatology 2015, 63, 462–469. [Google Scholar] [CrossRef]
- Centers for Disease, C.; Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey (NHANES). Methods and Analytic Guidelines. 2023. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 5 Febuary 2023).
- Vuppalanchi, R.; Siddiqui, M.S.; Van Natta, M.L.; Hallinan, E.; Brandman, D.; Kowdley, K.; Neuschwander-Tetri, B.A.; Loomba, R.; Dasarathy, S.; Abdelmalek, M. , et al. Performance characteristics of vibration-controlled transient elastography for evaluation of nonalcoholic fatty liver disease. Hepatology 2018, 67, 134–144. [Google Scholar] [CrossRef]
- Centers for Disease, C.; Prevention (CDC). National Health and Nutrition Examination Survey (NHANES). NCHS Ethics Review Board (ERB) Approval. 2023. Available online: https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 5 Febuary 2023).
- The American Heart Association (AHA) Added Sugars. 2018. Available online: https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/sugar/added-sugars (accessed on 5 March 2023).
- Centers for Disease, C.; Prevention (CDC). Liver Ultrasound Transient Elastography. 2022. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_LUX.htm (accessed on 18 Febuary 2023).
- Karlas, T.; Petroff, D.; Sasso, M.; Fan, J.a.-G.; Mi, Y.-Q.; de Ledinghen, V.; Kumar, M.; Lupsor-Platon, M.; Han, K.-H.; Cardoso, A. , et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. Journal of hepatology 2017, 66, 1022–1030. [Google Scholar] [CrossRef]
- National Institute on Alcohol, A. ; Alcoholism. Alcohol's Effects on Health. 2023.
- The World Health Organization (WHO). Global Strategy on Diet, Physical Activity and Health. 2023. Available online: https://www.who.int/dietphysicalactivity/factsheet_adults/en/ (accessed on 18 Febuary 2023).
- Centers for Disease, C.; Prevention (CDC). Defining Adult Overweight and Obesity. 2018. Available online: https://www.cdc.gov/obesity/adult/defining.html. (accessed on 10 March 2023).
- Centers for Disease Control and Prevention (CDC). NHANES Survey. Standard Biochemistry Profile. Availabe online: . 2023. 2023; (accessed on 25 March 2023).
- National Kidney Foundation. CKD-EPI Creatinine Equation (2021). 2021. Available online: https://www.kidney.org/content/ckd-epi-creatinine-equation-2021 (accessed on 10 Febuary 2023).
- Avignon, A. Protecting the Liver: Should We Substitute Fruit Juices for SugarSweetened Beverages? Diabetes Care 2022, 45, 1032–1034. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.; Abdelmalek, M.; Sullivan, S.; Nadeau, K.; Green, M.; Roncal, C.; Nakagawa, T.; Kuwabara, M.; Sato, Y.; Kang, D.-H. , et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. Journal of hepatology 2018, 68, 1063–1075. [Google Scholar] [CrossRef]
- Park, W.Y.; Yiannakou, I.; Petersen, J.M.; Hoffmann, U.; Ma, J.; Long, M.T. Sugar-Sweetened Beverage, Diet Soda, and Nonalcoholic Fatty Liver Disease Over 6 Years: The Framingham Heart Study. Clinical Gastroenterology and Hepatology 2022, 20, 2524–2532. [Google Scholar] [CrossRef] [PubMed]
- Emamat, H.; Ghalandari, H.; Tangestani, H.; Abdollahi, A.; Hekmatdoost, A. Artificial sweeteners are related to non-alcoholic fatty liver disease: Microbiota dysbiosis as a novel potential mechanism. EXCLI Journal 2020, 19, 620–620. [Google Scholar] [CrossRef]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride Metabolism in the Liver. Comprehensive Physiology 2017, 8, epub–20171212. [Google Scholar] [CrossRef]
- Ipsen, D.; Lykkesfeldt, J.; Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Molecular Life Science 2018, 75, 3313–3327. [Google Scholar] [CrossRef]
- Uebanso, T.; Ohnishi, A.; Kitayama, R.; Yoshimoto, A.; Nakahashi, M.; Shimohata, T.; Mawatari, K.; Takahashi, A. Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice. Nutrients 2017, 9, 560–560. [Google Scholar] [CrossRef]
- Aron-Wisnewsky, J.; Vigliotti, C.; Witjes, J.; Le, P.; Holleboom, A.; Verheij, J.; Nieuwdorp, M.; Clement, K. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nature Reviews Gastroenterology & Hepatology 2020, 17, 279–297. [Google Scholar] [CrossRef]
- Zani, F.; Blagih, J.; Gruber, T.; Buck, M.; Jones, N.; Hennequart, M.; Newell, C.; Pilley, S.; Soro-Barrio, P.; Kelly, G. , et al. The dietary sweetener sucralose is a negative modulator of T cell-mediated responses. Nature 2023, 615, 705–711. [Google Scholar] [CrossRef]
- Huby, T.; Gautier, E. Immune cell-mediated features of non-alcoholic steatohepatitis. Nature reviews 2022, 22, 429–443. [Google Scholar] [CrossRef]
- Kawano, Y.; Edwards, M.; Huang, Y.; Bilate, A.; Araujo, L.; Tanoue, T.; Atarashi, K.; Ladinsky, M.; Reiner, S.; Wang, H. , et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell 2022, 185, 3501–3519. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.B.; Hu, E.D.; Xu, L.M.; Chen, L.; Wu, J.L.; Li, H.; Chen, D.Z.; Chen, Y.P. The relationship between obesity and the severity of non-alcoholic fatty liver disease: systematic review and meta-analysis. Expert review of gastroenterology & hepatology 2018, 12, 491–502. [Google Scholar] [CrossRef]
- Vilalta, A.; Gutiérrez, J.A.; Chaves, S.Z.; Hernández, M.; Urbina, S.; Hompesch, M. Adipose tissue measurement in clinical research for obesity, type 2 diabetes and NAFLD/NASH. Endocrinology, Diabetes & Metabolism 2022, 5, e00335–e00335. [Google Scholar] [CrossRef]
- Ventura, E.; Davis, J.; Goran, M. Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content. Obesity (Silver Spring) 2011, 19, 868–874. [Google Scholar] [CrossRef]
- Walker, R.W.; Dumke, K.A.; Goran, M.I. Fructose content in popular beverages made with and without high-fructose corn syrup. Nutrition (Burbank, Los Angeles County, Calif.) 2014, 30, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Cirillo, P.; Sautin, Y.; McCall, S.; Bruchette, J.; Diehl, A.M.; Johnson, R.; Abdelmalek, M. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. Journal of Hepatology 2008, 48, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, B.M.; Ahuja, S.P.; Marliss, E.B. Effects of intravenously administered fructose and glucose on splanchnic amino acid and carbohydrate metabolism in hypertriglyceridemic men. Journal of Clinical Investigation 1975, 56, 970–977. [Google Scholar] [CrossRef]
- Johnston, R.; Stephenson, M.; Crossland, H.; Cordon, S.; Palcidi, E.; Cox, E.; Taylor, M.; Aithal, G.; Macdonald, I. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men. Gastroenterology 2013, 145, 1016–1025. [Google Scholar] [CrossRef]
- Naomi, N.; Ngo, J.; Brouwer-Brolsma, E.; Buso, M.; Soedamah-Muthu, S.; Perez-Rodrigo, C.; Harrold, J.; Halford, J.; Raben, A.; Geleijnse, J. , et al. Sugar-sweetened beverages, low/no-calorie beverages, fruit juice and non-alcoholic fatty liver disease defined by fatty liver index: the SWEET project. Nutrition & Diabetes 2023, 13, 6–6. [Google Scholar]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterology 2006, 6. [Google Scholar] [CrossRef]
- Varsamis, P.; Larsen, R.N.; Dunstan, D.W.; Jennings, G.L.; Owen, N.; Kingwell, B.A. The sugar content of soft drinks in Australia, Europe and the United States. The Medical Journal of Australia 2017, 206, 454–455. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Chen, J.; Li, X.; Fan, R.; Arsenault, B.; Gill, D.; Giovannucci, E.L.; Zheng, J.s.; Larsson, S.C. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study. European Journal of Epidemiology 2022, 37, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Sewter, R.; Heaney, S.; Patterson, A. Coffee Consumption and the Progression of NAFLD: A Systematic Review. Nutrients 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Vlassara H, Cai W, Crandall J, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy [published correction appears in Proc Natl Acad Sci U S A. 2003 Jan 21; 100(2): 763.]. Proc Natl Acad Sci U S A. 2002, 99, 15596-15601. [Google Scholar] [CrossRef]


| Factors | Liver examination status | ||||
|---|---|---|---|---|---|
| Total | Normal | NAFLD 1 | NASH | P value | |
| Raw population 2 | N=3739 | N=1636 | N=1367 | N=736 | |
| Survey-weighted 3 | 100% | 46.8% | 32.7% | 20.5% | |
| Personal characteristics | |||||
| Age, years (mean±se) | 48.0±0.7 | 43.9±0.9 | 53.6±1.1 | 48.4±0.9 | <0.001 |
| Gender | |||||
| male | 45.7% | 41.4% | 28.7% | 30.0% | <0.001 |
| female | 54.3% | 51.4% | 36.0% | 12.6% | |
| Race | |||||
| non-Hispanic White | 63.3% | 47.1% | 32.6% | 20.3% | 0.002 |
| non-Hispanic Black | 11.5% | 56.2% | 33.1% | 10.7% | |
| Mexican American | 7.1% | 36.2% | 36.2% | 27.5% | |
| other Hispanic | 7.3% | 43.9% | 31.7% | 24.4% | |
| other Race | 10.8% | 43.7% | 30.8% | 25.5% | |
| PIR | |||||
| below poverty | 11.3% | 48.4% | 32.8% | 18.8% | 0.754 |
| 1 - 1.99 | 16.2% | 42.4% | 38.9% | 19.7% | |
| 2 - 2.99 | 15.6% | 46.3% | 31.1% | 22.7% | |
| 3 - 3.00 | 13.9% | 49.0% | 29.5% | 21.6% | |
| ≥ 4 | 43.1% | 47.6% | 32.3% | 20.1% | |
| Factors | Liver examination status | ||||
|---|---|---|---|---|---|
| Total | Normal | NAFLD 1 | NASH | P value | |
| Raw population 2 | N=3739 | N=1636 | N=1367 | N=736 | |
| Survey-weighted 3 | 100% | 46.8% | 32.7% | 20.5% | |
| Lifestyle patterns | |||||
| Cigarettes use | |||||
| none | 63.7% | 65.5% | 62.1% | 62.1% | 0.513 |
| former | 23.0% | 20.4% | 25.0% | 12.2% | |
| current | 13.3% | 14.1% | 12.9% | 25.7% | |
| Alcohol use | |||||
| none | 21.6% | 19.2% | 26.5% | 19.1% | 0.003 |
| light to moderate | 78.4% | 80.8% | 73.5% | 80.9% | |
| Physical activity (hr/week) | |||||
| low | 58.0% | 50.2% | 68.0% | 60.0% | <0.001 |
| adequate | 42.0% | 49.8% | 32.0% | 40.0% | |
| Medical conditions 4 | |||||
| no | 43.2% | 51.7% | 32.0% | 41.8% | <0.001 |
| yes | 56.8% | 48.3% | 68.0% | 58.2% | |
| Daily dietary pattern, mean±se | |||||
| Total caloric (kcal) | 2047±25 | 2002±31 | 2020±35 | 2191±43 | <0.001 |
| Total sugar (gm) | 102±1.6 | 99±1.7 | 103±2.5 | 109±4.5 | 0.019 |
| Total fat (gm) | 84.4±1.3 | 83.2±1.7 | 82.9±1.5 | 89.6±2.2 | 0.017 |
| Total caffeine (mg) | 162±5.4 | 151±6.1 | 176±10.1 | 167±8.9 | 0.037 |
| Total alcohol (gm) | 7.1±0.4 | 6.3±0.4 | 7.4±0.8 | 8.8±1.2 | 0.030 |
| SSB-related elements | |||||
| Sugar intake from total SSB (gm), mean±se | 38.1±1.4 | 35.4±1.3 | 40.3±2.9 | 40.7±2.9 | 0.023 |
| Sugar intake from each SSB, mean±se | |||||
| Soda (gm) | 20.7±1.2 | 19.1±1.3 | 21.3±1.6 | 23.4±2.5 | 0.067 |
| Fruit drinks (gm) | 5.1±0.4 | 5.0±0.6 | 5.4±0.6 | 4.9±0.7 | 0.990 |
| Sweetened tea/coffee | 9.8±0.9 | 8.6±0.7 | 11.7±1.8 | 9.4±1.6 | 0.350 |
| Sport/energy drinks | 2.5±0.3 | 2.7±0.3 | 2.0±0.5 | 3.0±0.7 | 0.914 |
| Type of SSB intake | |||||
| non-SSB intake | 26.9% | 29.9% | 25.9% | 21.9% | 0.065 |
| non-soda intake 5 | 21.7% | 22.7% | 19.1% | 23.5% | |
| ASB intake only 6 | 10.5% | 7.3% | 13.0% | 11.4% | |
| regular soda only | 19.8% | 18.6% | 18.9% | 24.1% | |
| multiple types | 21.1% | 20.5% | 23.2% | 19.1% | |
| Clinical Examination | |||||
| LSM (kPa), mean±se | 5.5±0.1 | 4.8±0.1 | 5.8±0.2 | 6.5±0.3 | <0.001 |
| ALT (U/L), mean±se | 21.7±0.4 | 18.3±0.6 | 15.8±0.2 | 38.5±0.9 | <0.001 |
| AST (U/L), mean±se | 21.1±0.3 | 20.4±0.6 | 17.2±0.1 | 29.0±0.6 | <0.001 |
| eGFR, mL/min/1.73m2, mean±se | 96.3±0.8 | 99.0±0.9 | 92.0±1.4 | 97.2±1.4 | 0.056 |
| BMI | |||||
| normal weight | 29.3% | 53.3% | 13.4% | 7.1% | <0.001 |
| overweight | 32.2% | 32.1% | 37.0% | 28.4% | |
| obese | 38.5% | 14.6% | 49.6% | 64.5% | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
