Submitted:
04 August 2023
Posted:
08 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Stem cell therapy: researchers have successfully harnessed the differentiating capabilities of stem cells, enabling them to transform into various cell types, including heart cells. These remarkable cells hold the potential to generate new cardiac tissue, and extensive research has been conducted to refine the methods of differentiating stem cells into functional heart cells. Encouraging results have been observed in preclinical studies, underscoring the potential of stem cell therapy in cardiac regeneration [40,41,42,43,44].
- Biomaterials: the use of biomaterials has revolutionized the field of cardiac tissue engineering. These materials serve as scaffolds that support the growth and organization of heart cells, enabling the creation of three-dimensional structures that closely mimic the intricate architecture of the heart. This approach promotes the formation of functional cardiac tissue and holds tremendous promise for restoring the damaged heart to its optimal functionality [26,45,46].
- Bioreactors: bioreactors have emerged as invaluable tools in cardiac tissue engineering. They provide a controlled environment for the growth and maturation of cardiac tissue by subjecting the cells to specific mechanical and electrical stimuli. This exposure facilitates the development of functional cardiac tissue that closely resembles the native heart tissue in terms of structure and functionality. Bioreactors have played a pivotal role in advancing our understanding of cardiac regeneration and have significantly contributed to the progress made in the field [47,48,49,50].
- Gene therapy: gene therapy has emerged as a cutting-edge approach in cardiac tissue engineering. It involves the use of genetic techniques to enhance the differentiation potential of stem cells into heart cells or to promote the survival and function of existing heart cells. Through various gene therapy strategies, researchers have made significant strides in preclinical studies, opening up new possibilities for improving the effectiveness of cardiac regeneration [51,52,53,54].
2. Stem cell therapy
2.1. Adult stem cells
2.1.1. Skeletal myoblasts
2.1.2. Hematopoietic stem cells
2.1.3. Endothelial progenitor cells
2.1.4. Mesenchymal stem cells
2.1.5. Cardiac progenitor cells
2.2. Pluripotent stem cells
2.2.1. Embryonic stem cell
2.2.2. Induced pluripotent stem cell
| Stem Cells | Cell Type | Source | Advantages | Disadvantages | Ref. |
|---|---|---|---|---|---|
| Adult stem cells | Skeletal Myoblasts (SMs) | Skeletal muscle biopsies | High proliferation rate, resilient to myocardial ischemia, improve left ventricular function | Associated with increased risk of ventricular arrhythmias | [84,85,86,87] |
| Hematopoietic stem cells (HSCs) | Bone marrow of adult organisms | Abundant availability, ability to self-renew and to differentiate into blood and cardiac cell lineages | Immunogenicity, low efficiency of differentiation into cardiac cell lineages | [89,90,91,92,93,94,95] | |
| Endothelial progenitor cells (EPCs) | Bone marrow, peripheral blood, umbelical cord blood | Immunomodulatory properties, angiogenic potential, capability to promote the recruitment of other regenerative cells to injured cardiac tissue | Low number and limited lifespan in the peripheral blood, reduced regenerative potential | [96,97,98,99,100,101,102,103,104,105,106] | |
| Mesenchymal stem cells (MSCs) | Bone marrow, adipose tissue, umbelical cord blood and placenta | Easy isolation and expansion in vitro, anti-inflammatory properties, angiogenic potential, modulation of fibrosis and enhancement of the survival of existing cardiomyocytes | Heterogeneity, propensity to undergo senescence during expansion | [107,108,109,110,111,112,113] | |
| Cardiac progenitor cells (CPCs) | Embryonic, fetal and adult heart | Ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells, secretion of growth factors and cytokines for tissue repair and remodeling | Heterogeneity, lack of specific markers | [114,115,116,117,118,119,120,121] | |
| Pluripotent stem cells | Embryonic stem cells (ESCs) | Inner cell mass of the early-stage embryos | High regenerative and differentiative potential, self-renewal | Ethical concerns, immunogenicity and tumorigenicity | [126,127,128,129,130,131,132,133] |
| Induced pluripotent stem cells (iPSCs) | Adult somatic cells | Versatility, easy manipulation | Immunogenicity and tumorigenicity | [134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156] |
3. Biomaterials
3.1. Synthetic biomaterials
3.1.1. Polyurethane (PUR)
3.1.2. Polyethylene glycol (PEG)
3.1.3. Poly(εcaprolactone) (PCL)
3.1.4. Poly(lactic-co-glycolic acid) (PLGA)
3.1.5. Poly(l-lactide) (PLA)
3.1.6. Poly(glycerol sebacate) (PGS)
| Biomaterial | Source | Advantages | Formulation | Properties and Functions |
Ref. |
|---|---|---|---|---|---|
| Polyurethane (PUR) | Synthetic polymer | Biocompatibility, high flexibility, elasticity, durability |
Biomimetic scaffolds | Mimic the mechanical behavior of cardiac tissue, support cell adhesion, proliferation and differentiation | [68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175] |
| Polyethylene glycol (PEG) | Synthetic polymer derived from chemical modification of petroleum | Biocompatibility, hydrophilic, low immunogenicity and mechanical strength | Hydrogels | Support cell adhesion, survival and tissue maturation | [176,177,178,179] |
| Poly(ε-caprolactone) (PCL) | Synthetic polymer from the polymerization of ε-caprolactone monomers | Biodegradability, biocompatibility and processability |
Cardiac tissue constructs | Support cell adhesion, proliferation and differentiation | [180,181,182,183] |
| Poly(lactic-co-glycolic acid) (PLGA) | Synthetic polymer from a combination of lactic acid and glycolic acid | Biodegradability, biocompatibility | Fibers, films and scaffolds (cardiac patches) | Provide mechanical support forcell attachment and proliferation | [184,185,186,187] |
| Poly(l-lactide) (PLA) | Synthetic polymer derived from lactic acid | Biocompatibility, low cytotoxicity, high mechanical strength | Fibers, films and scaffolds (cardiac patches) | Support cell attachment, growth, proliferation and differentiation | [188,189,190] |
| Poly(glycerol sebacate) (PGS) | Synthetic polymer from glycerol and sebacic acid | High elasticity, biodegradability, biocompatibility and mechanical properties | Cardiac patches, bioartificial myocardium, and cardiovascular implants | Promote cell growth, enhance contractile function, and improve cardiac tissue regeneration | [191,192,193,194] |
3.2. Natural biomaterials
3.2.1. Collagen
3.2.2. Fibrin
3.2.3. Gelatin
3.2.4. Silk
3.2.5. Chitosan
3.2.6. Alginate
3.2.7. Hyaluronic acid
3.2.8. Decellularized extracellular matrix
4. Bioreactors
5. Gene therapy
6. Future directions
6.1. Organoids
6.2. Organs-on-Chips
7. Conclusion
- Advanced Cell-Based therapies: stem cell therapy is a rapidly evolving area, and ongoing research aims to optimize the use of different stem cell types to enhance their regenerative potential. Strategies to improve stem cell survival, engraftment, and differentiation into functional heart cells will be explored further. Additionally, the development of off-the-shelf cell products and strategies for immune modulation to overcome rejection issues will be crucial for widespread clinical implementation.
- Bioengineered heart tissue: the field of bioengineering will continue to advance, focusing on the development of artificial heart tissue with improved functionality and durability. Integration of advanced biomaterials, such as bioactive scaffolds and hydrogels, with growth factors and living cells will allow for the creation of more sophisticated and functional cardiac tissue constructs. Techniques like 3D bioprinting will play a pivotal role in fabricating complex structures that closely resemble native heart tissue.
- Maturation of engineered tissues: achieving functional maturity in bioengineered heart tissue remains a challenge. Future research will focus on refining bioreactor systems that mimic the mechanical and electrical cues experienced by the heart during development. By exposing cardiac cells to appropriate stimuli, researchers aim to promote the formation of fully matured tissue that can seamlessly integrate with the host tissue and exhibit proper contractile function.
- Gene therapy advancements: gene therapy approaches will continue to evolve, with a focus on enhancing the regenerative potential of stem cells and improving the survival and function of existing heart cells. Techniques such as gene editing and genetic reprogramming hold promise for precisely manipulating cell behaviour and enhancing therapeutic outcomes.
- Personalized medicine: the development of patient-specific therapies will be a major focus in the future. Advances in stem cell technology, tissue engineering, and genetic profiling will enable the generation of personalized cardiac tissue constructs that closely match an individual's specific needs. This tailored approach has the potential to significantly improve treatment outcomes and reduce the risk of rejection or adverse reactions.
- Translation to clinical practice: clinical trials evaluating the safety and efficacy of cardiac tissue engineering approaches are currently underway. As research progresses, these therapies are expected to advance from experimental stages to become viable treatment options for patients with heart disease. The optimization of manufacturing processes, scalability of production, and regulatory approval will be critical for the successful translation of these therapies into routine clinical practice.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mc Namara, K.; Alzubaidi, H.; Jackson, J.K. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr. Pharm. Res. Pract. 2019, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kreatsoulas, C.; Anand, S.S. The impact of social determinants on cardiovascular disease. Can. J. Cardiol. 2010, 26, 8C–13C. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan for the Prevention and Control of NCDs 2013-2020; World Health Organization: Geneva, 2021. [Google Scholar]
- Garbern, J.C.; Lee, R.T. Heart regeneration: 20 years of progress and renewed optimism. Dev. Cell. 2022, 57, 424–439. [Google Scholar] [CrossRef]
- Sadek, H.; Olson, E.N. Toward the Goal of Human Heart Regeneration. Cell Stem Cell 2020, 26, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; An, M.; Haubner, B.J.; Penninger, J.M. Cardiac regeneration: Options for repairing the injured heart. Front. Cardiovasc. Med. 2023, 9, 981982. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Olson, E.N.; Bassel-Duby, R. Therapeutic approaches for cardiac regeneration and repair. Nat. Rev. Cardiol. 2018, 15, 585–600. [Google Scholar] [CrossRef]
- Choi, W.Y.; Poss, K.D. Cardiac regeneration. Curr. Top Dev. Biol. 2012, 100, 319–344. [Google Scholar] [CrossRef]
- Bouten, C.V.C.; Cheng, C.; Vermue, I.M.; Gawlitta, D.; Passier, R. Cardiovascular Tissue Engineering and Regeneration: A Plead for Further Knowledge Convergence. Tissue Eng. Part A 2022, 28, 525–541. [Google Scholar] [CrossRef]
- Ghiroldi, A.; Piccoli, M.; Cirillo, F.; Monasky, M.M.; Ciconte, G.; Pappone, C.; Anastasia, L. Cell-Based Therapies for Cardiac Regeneration: A Comprehensive Review of Past and Ongoing Strategies. Int. J. Mol. Sci. 2018, 19, 3194. [Google Scholar] [CrossRef]
- Luo, L.; Li, T.S. Mini Review: Recent Advances in the Cell-Based Therapies for Cardiac Regeneration. Curr. Stem Cell Res. Ther. 2020, 15, 649–660. [Google Scholar] [CrossRef]
- Curtis, M.W.; Russell, B. Cardiac tissue engineering. J. Cardiovasc. Nurs. 2009, 24, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Leor, J.; Amsalem, Y.; Cohen, S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther. 2005, 105, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, X.; Ye, L. Cardiac Tissue Engineering for the Treatment of Myocardial Infarction. J. Cardiovasc. Dev. Dis. 2021, 8, 153. [Google Scholar] [CrossRef] [PubMed]
- Salgado, A.J.; Oliveira, J.M.; Martins, A.; Teixeira, F.G.; Silva, N.A.; Neves, N.M.; Sousa, N.; Reis, R.L. Tissue engineering and regenerative medicine: past, present, and future. Int. Rev. Neurobiol. 2013, 108, 1–33. [Google Scholar] [CrossRef]
- Kitsuka, T.; Takahashi, F.; Reinhardt, J.; Watanabe, T.; Ulziibayar, A.; Yimit, A.; Kelly, J.; Shinoka, T. Advances in Cardiac Tissue Engineering. Bioengineering 2022, 9, 696. [Google Scholar] [CrossRef]
- Sharma, V.; Dash, S.K.; Govarthanan, K.; Gahtori, R.; Negi, N.; Barani, M.; Tomar, R.; Chakraborty, S.; Mathapati, S.; Bishi, D.K.; Negi, P.; Dua, K.; Singh, S.K.; Gundamaraju, R.; Dey, A.; Ruokolainen, J.; Thakur, V.K.; Kesari, K.K.; Jha, N.K.; Gupta, P.K.; Ojha, S. Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells 2021, 10, 2538. [Google Scholar] [CrossRef]
- Nguyen, A.H.; Marsh, P.; Schmiess-Heine, L.; Burke, P.J.; Lee, A.; Lee, J.; Cao, H. Cardiac tissue engineering: state-of-the-art methods and outlook. J Biol Eng. 2019, 13, 57. [Google Scholar] [CrossRef]
- Chingale, M.; Zhu, D.; Cheng, K.; Huang, K. Bioengineering Technologies for Cardiac Regenerative Medicine. Front. Bioeng. Biotechnol. 2021, 9, 681705. [Google Scholar] [CrossRef]
- Hoang, D.M.; Pham, P.T.; Bach, T.Q.; Ngo, A.T.L.; Nguyen, Q.T.; Phan, T.T.K.; Nguyen, G.H.; Le, P.T.T.; Hoang, V.T.; Forsyth, N.R.; Heke, M.; Nguyen, L.T. Stem cell-based therapy for human diseases. Signal Transduct. Target Ther. 2022, 7, 272. [Google Scholar] [CrossRef]
- Augustine, R.; Dan, P.; Hasan, A.; Khalaf, I.M.; Prasad, P.; Ghosal, K.; Gentile, C.; McClements, L.; Maureira, P. Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomed Pharmacother 2021, 138, 111425. [Google Scholar] [CrossRef]
- Vunjak-Novakovic, G.; Lui, K.O.; Tandon, N.; Chien, K.R. Bioengineering heart muscle: a paradigm for regenerative medicine. Annu. Rev. Biomed Eng. 2011, 13, 245–267. [Google Scholar] [CrossRef] [PubMed]
- Smagul, S.; Kim, Y.; Smagulova, A.; Raziyeva, K.; Nurkesh, A.; Saparov, A. Biomaterials Loaded with Growth Factors/Cytokines and Stem Cells for Cardiac Tissue Regeneration. Int.. J Mo.l Sci. 2020, 21, 5952. [Google Scholar] [CrossRef] [PubMed]
- Rebouças, J.S.; Santos-Magalhães, N.S.; Formiga, F.R. Cardiac Regeneration using Growth Factors: Advances and Challenges. Arq. Bras. Cardiol. 2016, 107, 271–275. [Google Scholar] [CrossRef]
- Dai, Y.; Foley, A. Tissue engineering approaches to heart repair. Crit. Rev. Biomed Eng. 2014, 42, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Roacho-Pérez, J.A.; Garza-Treviño, E.N.; Moncada-Saucedo, N.K.; Carriquiry-Chequer, P.A.; Valencia-Gómez, L.E.; Matthews, E.R.; Gómez-Flores, V.; Simental-Mendía, M.; Delgado-Gonzalez, P.; Delgado-Gallegos, J.L.; Padilla-Rivas, G.R.; Islas, J.F. Artificial Scaffolds in Cardiac Tissue Engineering. Life 2022, 12, 1117. [Google Scholar] [CrossRef]
- O'Brien, T.; Barry, F.P. Stem cell therapy and regenerative medicine. Mayo Clin. Proc. 2009, 84, 859–861. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Sobhani, S.; Soltani Khaboushan, A.; Kajbafzadeh, A.M. Whole-Heart Tissue Engineering and Cardiac Patches: Challenges and Promises. Bioengineering 2023, 10, 106. [Google Scholar] [CrossRef]
- Li, M.; Wu, H.; Yuan, Y.; Hu, B.; Gu, N. Recent fabrications and applications of cardiac patch in myocardial infarction treatment. View 2022, 3, 20200153. [Google Scholar] [CrossRef]
- Mendelson, K.; Schoen, F.J. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 2006, 34, 1799–1819. [Google Scholar] [CrossRef]
- Stassen, O.M.J.A.; Muylaert, D.E.P.; Bouten, C.V.C.; Hjortnaes, J. Current Challenges in Translating Tissue-Engineered Heart Valves. Curr. Treat. Options Cardiovasc. Med. 2017, 19, 71. [Google Scholar] [CrossRef]
- Combs, M.D.; Yutzey, K.E. Heart valve development: regulatory networks in development and disease. Circ. Res. 2009, 105, 408–421. [Google Scholar] [CrossRef]
- Goubergrits, L.; Affeld, K.; Kertzscher, U. Innovative developments of the heart valves designed for use in ventricular assist devices. Expert Rev. Med. Devices. 2005, 2, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Albert, B.J.; Butcher, J.T. Future prospects in the tissue engineering of heart valves: a focus on the role of stem cells. Expert Opin. Biol. Ther. 2023, 23, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Nasser, M.I.; Qi, X.; Zhu, S.; He, Y.; Zhao, M.; Guo, H.; Zhu, P. Current situation and future of stem cells in cardiovascular medicine. Biomed Pharmacother. 2020, 132, 110813. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, I.C.P.; Kaasi, A.; Maciel Filho, R.; Jardini, A.; Gabriel, L.P. Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. Einstein 2018, 1, eRB4538. [Google Scholar] [CrossRef]
- Olson, J.L.; Atala, A.; Yoo, J.J. Tissue engineering: current strategies and future directions. Chonnam Med. J. 2011, 47, 1–13. [Google Scholar] [CrossRef]
- Häneke, T.; Sahara, M. Progress in Bioengineering Strategies for Heart Regenerative Medicine. Int. J. Mol. Sci. 2022, 23, 3482. [Google Scholar] [CrossRef]
- Fujita, B.; Zimmermann, W.H. Myocardial tissue engineering strategies for heart repair: current state of the art. Interact Cardiovasc. Thorac Surg. 2018, 27, 916–920. [Google Scholar] [CrossRef]
- Terashvili, M.; Bosnjak, Z.J. Stem Cell Therapies in Cardiovascular Disease. J. Cardiothorac. Vasc. Anesth. 2019, 33, 209–222. [Google Scholar] [CrossRef]
- Banovic, M.; Poglajen, G.; Vrtovec, B.; Ristic, A. Contemporary Challenges of Regenerative Therapy in Patients with Ischemic and Non-Ischemic Heart Failure. J Cardiovasc Dev Dis. 2022, 9, 429. [Google Scholar] [CrossRef]
- Vaka, R.; Davis, D.R. State-of-play for cellular therapies in cardiac repair and regeneration. Stem Cells 2021, 39, 1579–1588. [Google Scholar] [CrossRef] [PubMed]
- Madonna, R.; Van Laake, L.W.; Botker, H.E.; Davidson, S.M.; De Caterina, R.; Engel, F.B.; Eschenhagen, T.; Fernandez-Aviles, F.; Hausenloy, D.J.; Hulot, J.S.; Lecour, S.; Leor, J.; Menasché, P.; Pesce, M.; Perrino, C.; Prunier, F.; Van Linthout, S.; Ytrehus, K.; Zimmermann, W.H.; Ferdinandy, P.; Sluijter, J.P.G. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc. Res. 2019, 115, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.J.; Schulman, S.P.; Hare, J.M.; Oettgen, P. Is stem cell therapy ready for patients? Stem Cell Therapy for Cardiac Repair. Ready for the Next Step. Circulation 2006, 114, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Huyer, L.D.; Montgomery, M.; Zhao, Y.; Xiao, Y.; Conant, G.; Korolj, A.; Radisic, M. Biomaterial based cardiac tissue engineering and its applications. Biomed. Mater 2015, 10, 034004. [Google Scholar] [CrossRef] [PubMed]
- Reis, L.A.; Chiu, L.L.; Feric, N.; Fu, L.; Radisic, M. Biomaterials in myocardial tissue engineering. J. Tissue Eng. Regen. Med. 2016, 10, 11–28. [Google Scholar] [CrossRef]
- Paez-Mayorga, J.; Hernández-Vargas, G.; Ruiz-Esparza, G.U.; Iqbal, H.M.N.; Wang, X.; Zhang, Y.S.; Parra-Saldivar, R.; Khademhosseini, A. Bioreactors for Cardiac Tissue Engineering. Adv. Healthc. Mater. 2019, 8, e1701504. [Google Scholar] [CrossRef]
- Massai, D.; Cerino, G.; Gallo, D.; Pennella, F.; Deriu, M.A.; Rodriguez, A.; Montevecchi, F.M.; Bignardi, C.; Audenino, A.; Morbiducci, U. Bioreactors as engineering support to treat cardiac muscle and vascular disease. J. Healthc Eng. 2013, 4, 329–370. [Google Scholar] [CrossRef]
- Massai, D.; Pisani, G.; Isu, G.; Rodriguez Ruiz, A.; Cerino, G.; Galluzzi, R.; Pisanu, A.; Tonoli, A.; Bignardi, C.; Audenino, A.L.; Marsano, A.; Morbiducci, U. Bioreactor Platform for Biomimetic Culture and in situ Monitoring of the Mechanical Response of in vitro Engineered Models of Cardiac Tissue. Front. Bioeng. Biotechnol. 2020, 8, 733. [Google Scholar] [CrossRef]
- Belviso, I.; Romano, V.; Sacco, A.M.; Ricci, G.; Massai, D.; Cammarota, M.; Catizone, A.; Schiraldi, C.; Nurzynska, D.; Terzini, M.; Aldieri, A.; Serino, G.; Schonauer, F.; Sirico, F.; D'Andrea, F.; Montagnani, S.; Di Meglio, F.; Castaldo, C. Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 229. [Google Scholar] [CrossRef]
- Kim, Y.; Zharkinbekov, Z.; Sarsenova, M.; Yeltay, G.; Saparov, A. Recent Advances in Gene Therapy for Cardiac Tissue Regeneration. Int. J. Mol. Sci. 2021, 22, 9206. [Google Scholar] [CrossRef]
- Mason, D.; Chen, Y.Z.; Krishnan, H.V.; Sant, S. Cardiac gene therapy: Recent advances and future directions. J Control Release 2015, 215, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Barbato, J.E.; Kibbe, M.R.; Tzeng, E. The emerging role of gene therapy in the treatment of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci. 2003, 40, 499–545. [Google Scholar] [CrossRef] [PubMed]
- Kozarsky, K.F. Gene therapy for cardiovascular disease. Curr. Opin. Pharmacol. 2001, 1, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, S.; Alam, S.; Emon, N.U.; Boby, U.H.; Kamruzzaman Ahmed, F.; Monjur-Al-Hossain, A.S.M.; Tahamina, A.; Rudra, S.; Ajrin, M. Opportunities and challenges in stem cell therapy in cardiovascular diseases: Position standing in 2022. Saudi Pharm. J. 2022, 30, 1360–1371. [Google Scholar] [CrossRef]
- Rheault-Henry, M.; White, I.; Atoui, R. Therapeutic Uses of Stem Cells for Heart Failure: Hype or Hope. In Haider, K.H. : Eds.; Handbook of Stem Cell Therapy: Springer, Singapore, 2022; pp. 1–34. [Google Scholar]
- du Pré, B.C.; Doevendans, P.A.; van Laake, L.W. Stem cells for cardiac repair: an introduction. J. Geriatr. Cardiol. 2013, 10, 186–197. [Google Scholar] [CrossRef]
- Smits, A.M.; van Vliet, P.; Hassink, R.J.; Goumans, M.J.; Doevendans, P.A. The role of stem cells in cardiac regeneration. J. Cell Mol. Med. 2005, 9, 25–36. [Google Scholar] [CrossRef]
- Garbern, J.C.; Lee, R.T. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 2013, 12, 689–698. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Z.; Sun, Z. The potential and challenges of using stem cells for cardiovascular repair and regeneration. Genes Dis. 2014, 1, 113–119. [Google Scholar] [CrossRef]
- Isomi, M.; Sadahiro, T.; Ieda, M. Progress and Challenge of Cardiac Regeneration to Treat Heart Failure. J. Cardiol. 2019, 73, 97–101. [Google Scholar] [CrossRef]
- Duelen, R.; Sampaolesi, M. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise. EBioMedicine 2017, 16, 30–40. [Google Scholar] [CrossRef]
- Steinhoff, G.; Nesteruk, J.; Wolfien, M.; Kundt, G.; Börgermann, J.; David, R.; Garbade, J.; Große, J.; Haverich, A.; Hennig, H.; Kaminski, A.; Lotz, J.; Mohr, F.W.; Müller, P.; Oostendorp, R.; Ruch, U.; Sarikouch, S.; Skorska, A.; Stamm, C.; Tiedemann, G.; Wagner, F.M.; Wolkenhauer, O. Cardiac Function Improvement and Bone Marrow Response -: Outcome Analysis of the Randomized PERFECT Phase III Clinical Trial of Intramyocardial CD133+ Application After Myocardial Infarction. EBioMedicine, 2017, 22, 208–224. [Google Scholar] [CrossRef]
- Silvestre, J.S.; Smadja, D.M.; Lévy, B.I. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol. Rev. 2013, 93, 1743–1802. [Google Scholar] [CrossRef]
- Banerjee, M.N.; Bolli, R.; Hare, J.M. Clinical Studies of Cell Therapy in Cardiovascular Medicine: Recent Developments and Future Directions. Circ Res. 2018, 123, 266–287. [Google Scholar] [CrossRef] [PubMed]
- Hare, J.M.; Chaparro, S.V. Cardiac regeneration and stem cell therapy. Curr. Opin. Organ Transplant. 2008, 13, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Mohammedsaleh, Z.M. The use of patient-specific stem cells in different autoimmune diseases. Saudi J. Biol. Sci. 2022, 29, 3338–3346. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Li, Z.; Huang, K.; Caranasos, T.G.; Rossi, J.S.; Cheng, K. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat. Commun. 2021, 12, 1412. [Google Scholar] [CrossRef]
- Madonna, R.; Van Laake, L.W.; Davidson, S.M.; Engel, F.B.; Hausenloy, D.J.; Lecour, S.; Leor, J.; Perrino, C.; Schulz, R.; Ytrehus, K.; Landmesser, U.; Mummery, C.L.; Janssens, S.; Willerson, J.; Eschenhagen, T.; Ferdinandy, P.; Sluijter, J.P. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur. Heart J. 2016, 37, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Raynaud, C.M.; Ahmad, F.S.; Allouba, M.; Abou-Saleh, H.; Lui, K.O.; Yacoub, M. Reprogramming for cardiac regeneration. Glob Cardiol. Sci. Pract. 2014, 2014, 309–329. [Google Scholar] [CrossRef]
- Zhao, Y.; Londono, P.; Cao, Y.; Sharpe, E.J.; Proenza, C.; O'Rourke, R.; Jones, K.L.; Jeong, M.Y.; Walker, L.A.; Buttrick, P.M.; McKinsey, T.A.; Song, K. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat. Commun. 2015, 6, 8243. [Google Scholar] [CrossRef]
- Tonkin, D.; Yee-Goh, A.; Katare, R. Healing the Ischaemic Heart: A Critical Review of Stem Cell Therapies. Rev. Cardiovasc. Med. 2023, 24, 122. [Google Scholar] [CrossRef]
- Alhejailan, R.S.; Garoffolo, G.; Raveendran, V.V.; Pesce, M. Cells and Materials for Cardiac Repair and Regeneration. J. Clin. Med. 2023, 12, 3398. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.Y.; Tse, H.F. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons? Stem Cell Res. Ther. 2013, 4, 151. [Google Scholar] [CrossRef]
- Kadota, S.; Tanaka, Y.; Shiba, Y. Heart regeneration using pluripotent stem cells. J. Cardiol. 2020, 76, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Shiba, Y. Pluripotent Stem Cells for Cardiac Regeneration-Current Status, Challenges, and Future Perspectives. Circ J. 2020, 84, 2129–2135. [Google Scholar] [CrossRef] [PubMed]
- Duelen, R.; Sampaolesi, M. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise. EBioMedicine 2017, 16, 30–40. [Google Scholar] [CrossRef]
- Rajala, K.; Pekkanen-Mattila, M.; Aalto-Setälä, K. Cardiac differentiation of pluripotent stem cells. Stem Cells Int. 2011, 2011, 383709. [Google Scholar] [CrossRef]
- Zhang, J. Engineered Tissue Patch for Cardiac Cell Therapy. Curr. Treat Options Cardiovasc Med 2015, 17, 399. [Google Scholar] [CrossRef]
- Neishabouri, A.; Soltani Khaboushan, A.; Daghigh, F.; Kajbafzadeh, A.M.; Majidi Zolbin, M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front. Bioeng. Biotechnol. 2022, 10, 805299. [Google Scholar] [CrossRef]
- Harris, A.G.; Salih, T.; Ghorbel, M.T.; Caputo, M.; Biglino, G.; Carrabba, M. Biological Scaffolds for Congenital Heart Disease. Bioengineering 2023, 10, 57. [Google Scholar] [CrossRef]
- Katarzyna, R. Adult Stem Cell Therapy for Cardiac Repair in Patients After Acute Myocardial Infarction Leading to Ischemic Heart Failure: An Overview of Evidence from the Recent Clinical Trials. Curr. Cardiol. Rev. 2017, 13, 223–231. [Google Scholar] [CrossRef]
- Lovell, M.J.; Mathur, A. The role of stem cells for treatment of cardiovascular disease. Cell Prolif. 2004, 37, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Haider, H.Kh.; Tan, A.C.; Aziz, S.; Chachques, J.C.; Sim, E.K. Myoblast transplantation for cardiac repair: a clinical perspective. Mol. Ther. 2004, 9, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, H.; Hu, P. Stem cell activation in skeletal muscle regeneration. Cell Mol. Life Sci. 2015, 72, 1663–1677. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.; Tchao, J.; Tobita, K. Concise review: skeletal muscle stem cells and cardiac lineage: potential for heart repair. Stem Cells Transl. Med. 2014, 3, 183–193. [Google Scholar] [CrossRef]
- Tambara, K.; Sakakibara, Y.; Sakaguchi, G.; Lu, F.; Premaratne, G.U.; Lin, X.; Nishimura, K.; Komeda, M. Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation 2003, 108 Suppl 1, II259-63. [Google Scholar] [CrossRef]
- Durrani, S.; Konoplyannikov, M.; Ashraf, M.; Haider, K.H. Skeletal myoblasts for cardiac repair. Regen. Med. 2010, 5, 919–932. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hong, S.H. Hematopoietic Stem Cells and Their Roles in Tissue Regeneration. Int. J. Stem Cells. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Hawley, R.G.; Ramezani, A.; Hawley, T.S. Hematopoietic stem cells. Methods Enzymol. 2006, 419, 149–179. [Google Scholar] [CrossRef]
- Abbott, J.D.; Giordano, F.J. Stem cells and cardiovascular disease. J. Nucl. Cardiol. 2003, 10, 403–412. [Google Scholar] [CrossRef]
- Afjeh-Dana, E.; Naserzadeh, P.; Moradi, E.; Hosseini, N.; Seifalian, A.M.; Ashtari, B. Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem Cell Rev. Rep. 2022, 18, 2566–2592. [Google Scholar] [CrossRef]
- Charlesworth, C.T.; Hsu, I.; Wilkinson, A.C.; Nakauchi, H. Immunological barriers to haematopoietic stem cell gene therapy. Nat. Rev. Immunol. 2022, 22, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.A.; Gray, D.; Lomova, A.; Kohn, D.B. Hematopoietic Stem Cell Gene Therapy: Progress and Lessons Learned. Cell Stem Cell 2017, 21, 574–590. [Google Scholar] [CrossRef] [PubMed]
- Correia, C.D.; Ferreira, A.; Fernandes, M.T.; Silva, B.M.; Esteves, F.; Leitão, H.S.; Bragança, J.; Calado, S.M. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications-Are We on the Road to Success? Cells 2023, 12, 1727. [Google Scholar] [CrossRef]
- Sobota, R.; Kelm, M.; Merx, M.W.; Weber, C. Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res. Cardiol. 2008, 103, 69–77. [Google Scholar] [CrossRef]
- Xiao, S.T.; Kuang, C.Y. Endothelial progenitor cells and coronary artery disease: Current concepts and future research directions. World J. Clin. Cases 2021, 9, 8953–8966. [Google Scholar] [CrossRef]
- Janic, B.; Arbab, A.S. Cord blood endothelial progenitor cells as therapeutic and imaging probes. Imaging Med. 2012, 4, 477–490. [Google Scholar] [CrossRef]
- Kawamoto, A.; Losordo, D.W. Endothelial progenitor cells for cardiovascular regeneration. Trends Cardiovasc. Med. 2008, 18, 33–37. [Google Scholar] [CrossRef]
- Zhang, M.; Malik, A.B.; Rehman, J. Endothelial progenitor cells and vascular repair. Curr. Opin Hematol. 2014, 21, 224–228. [Google Scholar] [CrossRef]
- Huang, H.; Huang, W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front. Cardiovasc. Med. 2022, 9, 896782. [Google Scholar] [CrossRef]
- Dzau, V.J.; Gnecchi, M.; Pachori, A.S.; Morello, F.; Melo, L.G. Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension 2005, 46, 7–18. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, P.; Bian, G.L.; Huang, H.Y.; Shen, H.; Yang, J.J.; Yang, Z.Y.; Shen, Z.Y. The combination of stem cells and tissue engineering: an advanced strategy for blood vessels regeneration and vascular disease treatment. Stem Cell Res. Ther. 2017, 8, 194. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.B. Endothelial Progenitor Cells for the Vascularization of Engineered Tissues. Tissue Eng. Part B Rev. 2018, 24, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Qiu, Y.; Tao, J. The challenges and optimization of cell-based therapy for cardiovascular disease. J. Transl. Int. Med. 2021, 9, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Al-Omar, M.T.; Alnajjar, M.T.; Ahmed, Z.T.; Salaas, F.M.I.; Alrefaei, T.S.M.; Haider, K.H. Endothelial progenitor cell-derived small extracellular vesicles for myocardial angiogenesis and revascularization. J. Clin. Transl. Res. 2022, 8, 476–487. [Google Scholar] [PubMed]
- Han, Y.; Li, X.; Zhang, Y.; Han, Y.; Chang, F.; Ding, J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019, 8, 886. [Google Scholar] [CrossRef]
- Musiał-Wysocka, A.; Kot, M.; Majka, M. The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplant. 2019, 28, 801–812. [Google Scholar] [CrossRef]
- Nazari-Shafti, T.Z.; Neuber, S.; Garcia Duran, A.; Xu, Z.; Beltsios, E.; Seifert, M.; Falk, V.; Stamm, C. Human mesenchymal stromal cells and derived extracellular vesicles: Translational strategies to increase their proangiogenic potential for the treatment of cardiovascular disease. Stem Cells Transl. Med. 2020, 9, 1558–1569. [Google Scholar] [CrossRef]
- Daltro, P.S.; Barreto, B.C.; Silva, P.G.; Neto, P.C.; Sousa Filho, P.H.F.; Santana Neta, D.; Carvalho, G.B.; Silva, D.N.; Paredes, B.D.; de Alcantara, A.C.; Freitas, L.A.R.; Couto, R.D.; Santos, R.R.; Souza, B.S.F.; Soares, M.B.P.; Macambira, S.G. Therapy with mesenchymal stromal cells or conditioned medium reverse cardiac alterations in a high-fat diet-induced obesity model. Cytotherapy 2017, 19, 1176–1188. [Google Scholar] [CrossRef]
- Almeria, C.; Kreß, S.; Weber, V.; Egger, D.; Kasper, C. Heterogeneity of mesenchymal stem cell-derived extracellular vesicles is highly impacted by the tissue/cell source and culture conditions. Cell Biosci. 2022, 12, 51. [Google Scholar] [CrossRef]
- Meng, Q.S.; Liu, J.; Wei, L.; Fan, H.M.; Zhou, X.H.; Liang, X.T. Senescent mesenchymal stem/stromal cells and restoring their cellular functions. World J. Stem Cells 2020, 12, 966–985. [Google Scholar] [CrossRef]
- Cashman, T.J.; Gouon-Evans, V.; Costa, K.D. Mesenchymal stem cells for cardiac therapy: practical challenges and potential mechanisms. Stem Cell Rev. Rep. 2013, 9, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, R.A.; Essawy, M.M.; Barkat, M.A.; Awaad, A.K.; Thabet, E.H.; Hamed, H.A.; Elkafrawy, H.; Khalil, N.A.; Sallam, A.; Kholief, M.A.; Ibrahim, S.S.; Mourad, G.M. Cardiac stem cells: Current knowledge and future prospects. World J. Stem Cells 2022, 14, 1–40. [Google Scholar] [CrossRef]
- Amini, H.; Rezaie, J.; Vosoughi, A.; Rahbarghazi, R.; Nouri, M. Cardiac progenitor cells application in cardiovascular disease. J. Cardiovasc. Thorac. Res. 2017, 9, 127–132. [Google Scholar] [CrossRef]
- Gonzales, C.; Ullrich, N.D.; Gerber, S.; Berthonneche, C.; Niggli, E.; Pedrazzini, T. Isolation of cardiovascular precursor cells from the human fetal heart. Tissue Eng. Part A 2012, 18, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Bollini, S.; Smart, N.; Riley, P.R. Resident cardiac progenitor cells: at the heart of regeneration. J. Mol. Cell Cardiol. 2011, 50, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Nurzynska, D.; Di Meglio, F.; Romano, V.; Miraglia, R.; Sacco, A.M.; Latino, F.; Bancone, C.; Della Corte, A.; Maiello, C.; Amarelli, C.; Montagnani, S.; Castaldo, C. Cardiac primitive cells become committed to a cardiac fate in adult human heart with chronic ischemic disease but fail to acquire mature phenotype: genetic and phenotypic study. Basic. Res. Cardiol. 2013, 108, 320. [Google Scholar] [CrossRef]
- Romano, V.; Belviso, I.; Sacco, A.M.; Cozzolino, D.; Nurzynska, D.; Amarelli, C.; Maiello, C.; Sirico, F.; Di Meglio, F.; Castaldo, C. Human Cardiac Progenitor Cell-Derived Extracellular Vesicles Exhibit Promising Potential for Supporting Cardiac Repair in Vitro. Front. Physiol. 2022, 13, 879046. [Google Scholar] [CrossRef]
- Stastna, M.; Abraham, M.R.; Van Eyk, J.E. Cardiac stem/progenitor cells, secreted proteins, and proteomics. FEBS Lett. 2009, 583, 1800–7. [Google Scholar] [CrossRef]
- Barreto, S.; Hamel, L.; Schiatti, T.; Yang, Y.; George, V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019, 8, 1536. [Google Scholar] [CrossRef]
- Jiang, Y.; Lian, X.L. Heart regeneration with human pluripotent stem cells: Prospects and challenges. Bioact Mater. 2020, 5, 74–81. [Google Scholar] [CrossRef]
- Kadota, S.; Tanaka, Y.; Shiba, Y. Heart regeneration using pluripotent stem cells. J Cardiol. 2020, 76, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.J.; Murry, C.E. Cardiac regeneration using pluripotent stem cells--progression to large animal models. Stem Cell Res. 2014, 13, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; David, B.T.; Trawczynski, M.; Fessler, R.G. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev. Rep. 2020, 16, 3–32. [Google Scholar] [CrossRef]
- Menasché, P.; Vanneaux, V.; Hagège, A.; Bel, A.; Cholley, B.; Parouchev, A.; Cacciapuoti, I.; Al-Daccak, R.; Benhamouda, N.; Blons, H.; Agbulut, O.; Tosca, L.; Trouvin, J.H.; Fabreguettes, J.R.; Bellamy, V.; Charron, D.; Tartour, E.; Tachdjian, G.; Desnos, M.; Larghero, J. Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular Progenitors for Severe Ischemic Left Ventricular Dysfunction. J. Am. Coll. Cardiol. 2018, 71, 429–438. [Google Scholar] [CrossRef] [PubMed]
- He, J.Q.; Ma, Y.; Lee, Y.; Thomson, J.A.; Kamp, T.J. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res. 2003, 93, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.S.; Bernstein, H.S. Cardiac regeneration using human embryonic stem cells: producing cells for future therapy. Regen. Med. 2010, 5, 763–775. [Google Scholar] [CrossRef]
- Lo, B.; Parham, L. Ethical issues in stem cell research. Endocr. Rev. 2009, 30, 204–213. [Google Scholar] [CrossRef]
- Swijnenburg, R.J.; Schrepfer, S.; Govaert, J.A.; Cao, F.; Ransohoff, K.; Sheikh, A.Y.; Haddad, M.; Connolly, A.J.; Davis, M.M.; Robbins, R.C.; Wu, J.C. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc. Natl. Acad. Sci. USA. 2008, 105, 12991–12996. [Google Scholar] [CrossRef]
- Pearl, J.I.; Kean, L.S.; Davis, M.M.; Wu, J.C. Pluripotent stem cells: immune to the immune system? Sci. Transl. Med. 2012, 4, 164ps25. [Google Scholar] [CrossRef]
- Chambers, I.; Smith, A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 2004, 23, 7150–7160. [Google Scholar] [CrossRef]
- Volarevic, V.; Markovic, B.S.; Gazdic, M.; Volarevic, A.; Jovicic, N.; Arsenijevic, N.; Armstrong, L.; Djonov, V.; Lako, M.; Stojkovic, M. Ethical and Safety Issues of Stem Cell-Based Therapy. Int. J. Med. Sci. 2018, 15, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Shiba, N.; Sakamoto, K.; Ido, D.; Shiina, T.; Ohkura, M.; Nakai, J.; Uno, N.; Kazuki, Y.; Oshimura, M.; Minami, I.; Ikeda, U. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 2016, 538, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Belviso, I.; Sacco, A.M.; Romano, V.; Schonauer, F.; Nurzynska, D.; Montagnani, S.; Di Meglio, F.; Castaldo, C. Isolation of Adult Human Dermal Fibroblasts from Abdominal Skin and Generation of Induced Pluripotent Stem Cells Using a Non-Integrating Method. J. Vis. Exp. 2020, 155. [Google Scholar] [CrossRef]
- Ye, L.; Swingen, C.; Zhang, J. Induced pluripotent stem cells and their potential for basic and clinical sciences. Curr. Cardiol. Rev. 2013, 9, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Yoon, Y.S. Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes. Korean Circ. J. 2018, 48, 974–988. [Google Scholar] [CrossRef]
- Paik, D.T.; Chandy, M.; Wu, J.C. Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacol Rev. 2020, 72, 320–342. [Google Scholar] [CrossRef]
- Musunuru, K.; Sheikh, F.; Gupta, R.M.; Houser, S.R.; Maher, K.O.; Milan, D.J.; Terzic, A.; Wu, J.C.; American Heart Association Council on Functional Genomics and Translational Biology; Council on Cardiovascular Disease in the Young; and Council on Cardiovascular and Stroke Nursing. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. Circ. Genom. Precis Med. 2018, 11, e000043. [Google Scholar] [CrossRef]
- Moretti, A.; Laugwitz, K.L.; Dorn, T.; Sinnecker, D.; Mummery, C. Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med 2013, 3, a014027. [Google Scholar] [CrossRef]
- Cho, S.; Lee, C.; Skylar-Scott, M.A.; Heilshorn, S.C.; Wu, J.C. Reconstructing the heart using iPSCs: Engineering strategies and applications. J. Mol. Cell Cardiol. 2021, 157, 56–65. [Google Scholar] [CrossRef]
- Fanizza, F.; Campanile, M.; Forloni, G.; Giordano, C.; Albani, D. Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders. J. Tissue Eng. 2022, 13, 20417314221095339. [Google Scholar] [CrossRef]
- Funakoshi, S.; Yoshida, Y. Recent progress of iPSC technology in cardiac diseases. Arch. Toxicol. 2021, 95, 3633–3650. [Google Scholar] [CrossRef] [PubMed]
- Masumoto, H.; Nakane, T.; Tinney, J.P.; Yuan, F.; Ye, F.; Kowalski, W.J.; Minakata, K.; Sakata, R.; Yamashita, J.K.; Keller, B.B. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Sci. Rep. 2016, 6, 29933. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, H.; Feng, Q.S.; Cai, M.B.; Deng, W.; Qin, D.; Yun, J.P.; Tsao, G.S.; Kang, T.; Esteban, M.A.; Pei, D.; Zeng, Y.X. The propensity for tumorigenesis in human induced pluripotent stem cells is related with genomic instability. Chin. J. Cancer. 2013, 32, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, S.P.; Shevchenko, A.I.; Zakian, S.M. Induced Pluripotent Stem Cells: Problems and Advantages when Applying them in Regenerative Medicine. Acta Naturae 2010, 2, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Wada, H.; Murata, T.; Seino, K.I. Immune reaction and regulation in transplantation based on pluripotent stem cell technology. Inflamm. Regen. 2020, 40, 12. [Google Scholar] [CrossRef]
- Sackett, S.D.; Brown, M.E.; Tremmel, D.M.; Ellis, T.; Burlingham, W.J.; Odorico, J.S. Modulation of human allogeneic and syngeneic pluripotent stem cells and immunological implications for transplantation. Transplant Rev. 2016, 30, 61–70. [Google Scholar] [CrossRef]
- Fuerstenau-Sharp, M.; Zimmermann, M.E.; Stark, K.; Jentsch, N.; Klingenstein, M.; Drzymalski, M.; Wagner, S.; Maier, L.S.; Hehr, U.; Baessler, A.; Fischer, M.; Hengstenberg, C. Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells. PLoS One 2015, 10, e0126596. [Google Scholar] [CrossRef]
- Bizy, A.; Klos, M. Optimizing the Use of iPSC-CMs for Cardiac Regeneration in Animal Models. Animals 2020, 10, 1561. [Google Scholar] [CrossRef]
- Huang, C.Y.; Peres Moreno Maia-Joca, R.; Ong, C.S.; Wilson, I.; Di Silvestre, D.; Tomaselli, G.F.; Reich, D.H. Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J. Mol. Cell Cardiol. 2020, 138, 1–11. [Google Scholar] [CrossRef]
- Burnett, S.D.; Blanchette, A.D.; Chiu, W.A.; Rusyn, I. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes as an in vitro model in toxicology: strengths and weaknesses for hazard identification and risk characterization. Expert Opin. Drug Metab. Toxicol. 2021, 17, 887–902. [Google Scholar] [CrossRef]
- Buikema, J.W.; Van Der Meer, P.; Sluijter, J.P.; Domian, I.J. Concise review: Engineering myocardial tissue: the convergence of stem cells biology and tissue engineering technology. Stem Cells 2013, 31, 2587–2598. [Google Scholar] [CrossRef] [PubMed]
- Vunjak-Novakovic, G.; Tandon, N.; Godier, A.; Maidhof, R.; Marsano, A.; Martens, T.P.; Radisic, M. Challenges in cardiac tissue engineering. Tissue Eng. Part B Rev. 2010, 16, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.L. Some Ethical Concerns About Human Induced Pluripotent Stem Cells. Sci. Eng. Ethics. 2016, 22, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Mahdizadeh, H.; Šarić, T.; Kim, J.; Harati, J.; Shahsavarani, H.; Greber, B.; Moore, J.B. 4th. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res. Ther. 2019, 10, 341. [Google Scholar] [CrossRef] [PubMed]
- Vasu, S.; Zhou, J.; Chen, J.; Johnston, P.V.; Kim, D.H. Biomaterials-based Approaches for Cardiac Regeneration. Korean Circ. J. 2021, 51, 943–960. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Yang, B.; Li, R.K. Application of biomaterials in cardiac repair and regeneration. Engineering 2016, 2, 141–188. [Google Scholar] [CrossRef]
- Tariq, U.; Gupta, M.; Pathak, S.; Patil, R.; Dohare, A.; Misra, S.K. Role of Biomaterials in Cardiac Repair and Regeneration: Therapeutic Intervention for Myocardial Infarction. ACS. Biomater Sci. Eng. 2022, 8, 3271–3298. [Google Scholar] [CrossRef]
- Scafa Udriște, A.; Niculescu, A.G.; Iliuță, L.; Bajeu, T.; Georgescu, A.; Grumezescu, A.M.; Bădilă, E. Progress in Biomaterials for Cardiac Tissue Engineering and Regeneration. Polymers 2023, 15, 1177. [Google Scholar] [CrossRef]
- Majid, Q.A.; Fricker, A.T.R.; Gregory, D.A.; Davidenko, N.; Hernandez Cruz, O.; Jabbour, R.J.; Owen, T.J.; Basnett, P.; Lukasiewicz, B.; Stevens, M.; Best, S.; Cameron, R.; Sinha, S.; Harding, S.E.; Roy, I. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front. Cardiovasc. Med 2020, 7, 554597. [Google Scholar] [CrossRef]
- BaoLin, G.; Ma, P.X. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci. China Chem. 2014, 7, 490–500. [Google Scholar] [CrossRef]
- Bolan, F.; Louca, I.; Heal, C.; Cunningham, C.J. The Potential of Biomaterial-Based Approaches as Therapies for Ischemic Stroke: A Systematic Review and Meta-Analysis of Pre-clinical Studies. Front. Neurol. 2019, 10, 924. [Google Scholar] [CrossRef] [PubMed]
- McMahan, S.; Taylor, A.; Copeland, K.M.; Pan, Z.; Liao, J.; Hong, Y. Current advances in biodegradable synthetic polymer based cardiac patches. J. Biomed. Mater Res. A 2020, 108, 972–983. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi Nasr, S.; Rabiee, N.; Hajebi, S.; Ahmadi, S.; Fatahi, Y.; Hosseini, M.; Bagherzadeh, M.; Ghadiri, A.M.; Rabiee, M.; Jajarmi, V.; Webster, T.J. Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine. Int. J. Nanomedicine 2020, 15, 4205–4224. [Google Scholar] [CrossRef] [PubMed]
- Reis, L.A.; Chiu, L.L.; Feric, N.; Fu, L.; Radisic, M. Biomaterials in myocardial tissue engineering. J. Tissue Eng. Regen. Med. 2016, 10, 11–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, W.; Zhang, Y.; He, X.; Wang, Y.; Ma, H.; Zhu, T.; Li, A.; Hou, Q.; Yang, W.; Ding, Y.; Ramakrishna, S.; Li, H. Recent Advances in Cardiac Patches: Materials, Preparations, and Properties. ACS. Biomater Sci. Eng. 2022, 8, 3659–3675. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, D.D.; Kim, S.; Wagner, W.R. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J. Biomed Mater Res. A 2022, 110, 1460–1487. [Google Scholar] [CrossRef]
- Scheuer-Leeser, M.; Irnich, W.; Kreuzer, J. Polyurethane leads: facts and controversy. Pacing Clin. Electrophysiol. 1983, 6, 454–463. [Google Scholar] [CrossRef]
- Naureen, B.; Haseeb, A.S.M.A.; Basirun, W.J.; Muhamad, F. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. Mater. Sci. Eng. C Mater Biol. Appl. 2021, 118, 111228. [Google Scholar] [CrossRef]
- Guerin, P. Use of synthetic polymers for biomedical application. Pacing Clin. Electrophysiol. 1983, 6, 449–453. [Google Scholar] [CrossRef]
- Chiono, V.; Mozetic, P.; Boffito, M.; Sartori, S.; Gioffredi, E.; Silvestri, A.; Rainer, A.; Giannitelli, S.M.; Trombetta, M.; Nurzynska, D.; Di Meglio, F.; Castaldo, C.; Miraglia, R.; Montagnani, S.; Ciardelli, G. Polyurethane-based scaffolds for myocardial tissue engineering. Interface Focus 2014, 4, 20130045. [Google Scholar] [CrossRef]
- Griffin, M.; Castro, N.; Bas, O.; Saifzadeh, S.; Butler, P.; Hutmacher, D.W. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications. Tissue Eng. Part B Rev. 2020, 26, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Raeisdasteh Hokmabad, V.; Davaran, S.; Ramazani, A.; Salehi, R. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J. Biomater. Sci. Polym. Ed. 2017, 28, 1797–1825. [Google Scholar] [CrossRef] [PubMed]
- Dulińska-Molak, I.; Lekka, M.; Kurzydłowski, K.J. Surface properties of polyurethane composites for biomedical applications. Appl. Surf. Sci. 2013, 270, 553–560. [Google Scholar] [CrossRef]
- Lin, C.C.; Anseth, K.S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 2009, 26, 631–43. [Google Scholar] [CrossRef]
- Willerth, S.M.; Sakiyama-Elbert, S.E. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. In StemBook [Internet]; Harvard Stem Cell Institute: Cambridge, MA, USA, 2008. [Google Scholar]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 2010, 49, 6288–6308. [Google Scholar] [CrossRef]
- Riewruja, K.; Aguglia, A.M.; Hines, S.; Makarcyzk, M.J.; Honsawek, S.; Lin, H. PEG Reinforced Scaffold Promotes Uniform Distribution of Human MSC-Created Cartilage Matrix. Gels 2022, 8, 794. [Google Scholar] [CrossRef]
- Siddiqui, N.; Asawa, S.; Birru, B.; Baadhe, R.; Rao, S. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol. Biotechnol. 2018, 60, 506–532. [Google Scholar] [CrossRef]
- Wunner, F.M.; Bas, O.; Saidy, N.T.; Dalton, P.D.; Pardo, E.M.D.; Hutmacher, D.W. Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications. J. Vis. Exp. 2017, 130, 56289. [Google Scholar] [CrossRef]
- Wanjare, M.; Hou, L.; Nakayama, K.H.; Kim, J.J.; Mezak, N.P.; Abilez, O.J.; Tzatzalos, E.; Wu, J.C.; Huang, N.F. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomater. Sci. 2017, 5, 1567–1578. [Google Scholar] [CrossRef]
- Ko, J.; Mohtaram, N.K.; Ahmed, F.; Montgomery, A.; Carlson, M.; Lee, P.C.; Willerth, S.M.; Jun, M.B. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. J. Biomater. Sci. Polym. Ed. 2014, 25, 1–17. [Google Scholar] [CrossRef]
- Xu, Y.; Kim, C.S.; Saylor, D.M.; Koo, D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J. Biomed. Mater Res. B Appl. Biomater. 2017, 105, 1692–1716. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lee, A.R.; Lin, W.H.; Lin, C.W.; Wu, Y.K.; Tsai, W.B. Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng. Part A 2014, 20, 1896–1907. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Radisic, M.; Lim, J.O.; Chang, B.H.; Vunjak-Novakovic, G. A novel composite scaffold for cardiac tissue engineering. In Vitro Cell Dev. Biol. Anim. 2005, 41, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Shi, S.; Zhang, Y.; Liu, F.; Zhu, L.; Shi, B.; Wang, J. Construction of engineered myocardial tissues in vitro with cardiomyocyte-like cells and a polylactic-co-glycolic acid polymer. Mol. Med. Rep. 2019, 20, 2403–2409. [Google Scholar] [CrossRef] [PubMed]
- Senatov, F.S.; Niaza, K.V.; Zadorozhnyy, M.Y.; Maksimkin, A.V.; Kaloshkin, S.D.; Estrin, Y.Z. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J. Mech. Behav. Biomed Mater. 2016, 57, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Phutane, P.; Telange, D.; Agrawal, S.; Gunde, M.; Kotkar, K.; Pethe, A. Biofunctionalization and Applications of Polymeric Nanofibers in Tissue Engineering and Regenerative Medicine. Polymers 2023, 15, 1202. [Google Scholar] [CrossRef]
- Santoro, M.; Shah, S.R.; Walker, J.L.; Mikos, A.G. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 2016, 107, 206–212. [Google Scholar] [CrossRef]
- Sencadas, V.; Sadat, S.; Silva, D.M. Mechanical performance of elastomeric PGS scaffolds under dynamic conditions. J. Mech. Behav. Biomed Mater. 2020, 102, 103474. [Google Scholar] [CrossRef]
- Kharaziha, M.; Nikkhah, M.; Shin, S.R.; Annabi, N.; Masoumi, N.; Gaharwar, A.K.; Camci-Unal, G.; Khademhosseini, A. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 2013, 34, 6355–6366. [Google Scholar] [CrossRef]
- Jeffries, E.M.; Allen, R.A.; Gao, J.; Pesce, M.; Wang, Y. Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Acta Biomater. 2015, 18, 30–39. [Google Scholar] [CrossRef]
- Rai, R.; Tallawi, M.; Barbani, N.; Frati, C.; Madeddu, D.; Cavalli, S.; Graiani, G.; Quaini, F.; Roether, J.A.; Schubert, D.W.; Rosellini, E.; Boccaccini, A.R. Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application. Mater Sci. Eng. C Mater. Biol. Appl. 2013, 33, 3677–3687. [Google Scholar] [CrossRef] [PubMed]
- Pushp, P.; Gupta, M.K. Cardiac Tissue Engineering: A Role for Natural Biomaterials. In Pal, D., Nayak, A.K., Eds.; Bioactive Natural Products for Pharmaceutical Applications. Advanced Structured Materials: Springer, Cham, 2021; Volume 140, pp. 617–641. [Google Scholar]
- Christman, K.L.; Lee, R.J. Biomaterials for the treatment of myocardial infarction. J. Am. Coll. Cardiol. 2006, 48, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.; Waters, R.; Roula, B.; Dana, R.; Yara, S.; Alexandre, T.; Paul, A. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromol. Biosci. 2016, 16, 958–977. [Google Scholar] [CrossRef] [PubMed]
- Scafa Udriște, A.; Niculescu, A.G.; Iliuță, L.; Bajeu, T.; Georgescu, A.; Grumezescu, A.M.; Bădilă, E. Progress in Biomaterials for Cardiac Tissue Engineering and Regeneration. Polymers 2023, 15, 1177. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.Q.; Peng, S.; Song, Z.Y.; Lin, S. Collagen biomaterial for the treatment of myocardial infarction: an update on cardiac tissue engineering and myocardial regeneration. Drug Deliv Transl. Res. 2019, 9, 920–934. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Lv, Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers 2016, 8, 42. [Google Scholar] [CrossRef]
- Cen, L.; Liu, W.; Cui, L.; Zhang, W.; Cao, Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr. Res. 2008, 63, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Li, Q.; Zhao, Y.; Chen, W.; Chen, B.; Xiao, Z.; Lin, H.; Nie, L.; Wang, D.; Dai, J. Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration. Biomaterials 2011, 32, 2508–2515. [Google Scholar] [CrossRef]
- Rashedi, I.; Talele, N.; Wang, X.H.; Hinz, B.; Radisic, M.; Keating, A. Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS One 2017, 12, e0187348. [Google Scholar] [CrossRef]
- Wang, Q.; He, X.; Wang, B.; Pan, J.; Shi, C.; Li, J.; Wang, L.; Zhao, Y.; Dai, J.; Wang, D. Injectable collagen scaffold promotes swine myocardial infarction recovery by long-term local retention of transplanted human umbilical cord mesenchymal stem cells. Sci. China Life Sci. 2021, 64, 269–281. [Google Scholar] [CrossRef]
- He, S.; Zhang, Z.; Luo, R.; Jiang, Q.; Yang, L.; Wang, Y. Advances in Injectable Hydrogel Strategies for Heart Failure Treatment. Adv. Healthc Mater. 2023, 12, e2300029. [Google Scholar] [CrossRef] [PubMed]
- Rinkevich-Shop, S.; Landa-Rouben, N.; Epstein, F.H.; Holbova, R.; Feinberg, M.S.; Goitein, O.; Kushnir, T.; Konen, E.; Leor, J. Injectable collagen implant improves survival, cardiac remodeling, and function in the early period after myocarditis in rats. J. Cardiovasc. Pharmacol. Ther. 2014, 19, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Barsotti, M.C.; Felice, F.; Balbarini, A.; Di Stefano, R. Fibrin as a scaffold for cardiac tissue engineering. Biotechnol. Appl. Biochem. 2011, 58, 301–310. [Google Scholar] [CrossRef]
- Roura, S.; Gálvez-Montón, C.; Bayes-Genis, A. Fibrin, the preferred scaffold for cell transplantation after myocardial infarction? An old molecule with a new life. J Tissue Eng Regen Med. 2017, 11, 2304–2313. [Google Scholar] [CrossRef] [PubMed]
- Jockenhoevel, S.; Zund, G.; Hoerstrup, S.P.; Chalabi, K.; Sachweh, J.S.; Demircan, L.; Messmer, B.J.; Turina, M. Fibrin gel -- advantages of a new scaffold in cardiovascular tissue engineering. Eur. J. Cardiothorac Surg. 2001, 19, 424–530. [Google Scholar] [CrossRef]
- Echave, M.C.; Saenz del Burgo, L.; Pedraz, J.L.; Orive, G. Gelatin as Biomaterial for Tissue Engineering. Curr Pharm. Des. 2017, 23, 3567–3584. [Google Scholar] [CrossRef]
- Lukin, I.; Erezuma, I.; Maeso, L.; Zarate, J.; Desimone, M.F.; Al-Tel, T.H.; Dolatshahi-Pirouz, A.; Orive, G. Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics 2022, 14, 1177. [Google Scholar] [CrossRef]
- Nakajima, K.; Fujita, J.; Matsui, M.; Tohyama, S.; Tamura, N.; Kanazawa, H.; Seki, T.; Kishino, Y.; Hirano, A.; Okada, M.; Tabei, R.; Sano, M.; Goto, S.; Tabata, Y.; Fukuda, K. Gelatin Hydrogel Enhances the Engraftment of Transplanted Cardiomyocytes and Angiogenesis to Ameliorate Cardiac Function after Myocardial Infarction. PLoS One 2015, 10, e0133308. [Google Scholar] [CrossRef]
- Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev. 2013, 65, 457–470. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.; Yue, F.; Lv, Q.; Cai, B.; Dong, N.; Wang, Z.; Wang, L. Silk-Based Biomaterials for Cardiac Tissue Engineering. Adv. Healthc. Mater. 2020, e2000735. [Google Scholar] [CrossRef]
- Motta, A.; Barone, R.; Macaluso, F.; Giambalvo, F.; Pecoraro, F.; Di Marco, P.; Cassata, G.; Puleio, R.; Migliaresi, C.; Guercio, A.; Di Felice, V. Silk-Based Matrices and c-Kit-Positive Cardiac Progenitor Cells for a Cellularized Silk Fibroin Scaffold: Study of an in vivo Model. Cells Tissues Organs 2023, 212, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Zharkinbekov, Z.; Raziyeva, K.; Tabyldiyeva, L.; Berikova, K.; Zhumagul, D.; Temirkhanova, K.; Saparov, A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023, 5, 807. [Google Scholar] [CrossRef]
- Beleño Acosta, B.; Advincula, R.C.; Grande-Tovar, C.D. Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review. Molecules 2023, 28, 1920. [Google Scholar] [CrossRef]
- Kazemi Asl, S.; Rahimzadegan, M.; Ostadrahimi, R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr. Polym. 2023, 300, 120266. [Google Scholar] [CrossRef] [PubMed]
- Liberski, A.; Latif, N.; Raynaud, C.; Bollensdorff, C.; Yacoub, M. Alginate for cardiac regeneration: From seaweed to clinical trials. Glob. Cardiol. Sci. Pract. 2016, 2016, e201604. [Google Scholar] [CrossRef] [PubMed]
- Ruvinov, E.; Cohen, S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. Adv. Drug Deliv. Rev. 2016, 96, 54–76. [Google Scholar] [CrossRef] [PubMed]
- Cattelan, G.; Guerrero Gerbolés, A.; Foresti, R.; Pramstaller, P.P.; Rossini, A.; Miragoli, M.; Caffarra Malvezzi, C. Alginate Formulations: Current Developments in the Race for Hydrogel-Based Cardiac Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 414. [Google Scholar] [CrossRef]
- Bonafè, F.; Govoni, M.; Giordano, E.; Caldarera, C.M.; Guarnieri, C.; Muscari, C. Hyaluronan and cardiac regeneration. J. Biomed. Sci. 2014, 21, 100. [Google Scholar] [CrossRef]
- Xu, X.; Jha, A.K.; Harrington, D.A.; Farach-Carson, M.C.; Jia, X. Hyaluronic Acid-Based Hydrogels: from a Natural Polysaccharide to Complex Networks. Soft Matter. 2012, 8, 3280–3294. [Google Scholar] [CrossRef]
- Abdalla, S.; Makhoul, G.; Duong, M.; Chiu, R.C.; Cecere, R. Hyaluronic acid-based hydrogel induces neovascularization and improves cardiac function in a rat model of myocardial infarction. Interact Cardiovasc. Thorac. Surg. 2013, 17, 767–772. [Google Scholar] [CrossRef]
- Le, L.V.; Mohindra, P.; Fang, Q.; Sievers, R.E.; Mkrtschjan, M.A.; Solis, C.; Safranek, C.W.; Russell, B.; Lee, R.J.; Desai, T.A. Injectable hyaluronic acid based microrods provide local micromechanical and biochemical cues to attenuate cardiac fibrosis after myocardial infarction. Biomaterials 2018, 169, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Mendibil, U.; Ruiz-Hernandez, R.; Retegi-Carrion, S.; Garcia-Urquia, N.; Olalde-Graells, B.; Abarrategi, A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int. J. Mol. Sci. 2020, 21, 5447. [Google Scholar] [CrossRef] [PubMed]
- Eitan, Y.; Sarig, U.; Dahan, N.; Machluf, M. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Tissue Eng. Part C Methods 2010, 16, 671–683. [Google Scholar] [CrossRef]
- Di Meglio, F.; Nurzynska, D.; Romano, V.; Miraglia, R.; Belviso, I.; Sacco, A.M.; Barbato, V.; Di Gennaro, M.; Granato, G.; Maiello, C.; Montagnani, S.; Castaldo, C. Optimization of Human Myocardium Decellularization Method for the Construction of Implantable Patches. Tissue Eng. Part C Methods 2017, 23, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Belviso, I.; Sacco, A.M.; Cozzolino, D.; Nurzynska, D.; Di Meglio, F.; Castaldo, C.; Romano, V. Cardiac-derived extracellular matrix: A decellularization protocol for heart regeneration. PLoS One 2022, 7, e0276224. [Google Scholar] [CrossRef]
- Lockhart, M.; Wirrig, E.; Phelps, A.; Wessels, A. Extracellular matrix and heart development. Birth Defects Res A Clin. Mol. Teratol. 2011, 91, 535–550. [Google Scholar] [CrossRef]
- Belviso, I.; Angelini, F.; Di Meglio, F.; Picchio, V.; Sacco, A.M.; Nocella, C.; Romano, V.; Nurzynska, D.; Frati, G.; Maiello, C.; Messina, E.; Montagnani, S.; Pagano, F.; Castaldo, C.; Chimenti, I. The Microenvironment of Decellularized Extracellular Matrix from Heart Failure Myocardium Alters the Balance between Angiogenic and Fibrotic Signals from Stromal Primitive Cells. Int. J. Mol. Sci. 2020, 21, 7903. [Google Scholar] [CrossRef]
- Bayomy, A.F.; Bauer, M.; Qiu, Y.; Liao, R. Regeneration in heart disease-Is ECM the key? Life Sci. 2012, 91, 823–827. [Google Scholar] [CrossRef]
- Guyette, J.P.; Charest, J.M.; Mills, R.W.; Jank, B.J.; Moser, P.T.; Gilpin, S.E.; Gershlak, J.R.; Okamoto, T.; Gonzalez, G.; Milan, D.J.; Gaudette, G.R.; Ott, H.C. Bioengineering Human Myocardium on Native Extracellular Matrix. Circ. Res. 2016, 118, 56–72. [Google Scholar] [CrossRef]
- McInnes, A.D.; Moser, M.A.J.; Chen, X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J. Funct. Biomater. 2022, 13240. [Google Scholar] [CrossRef]
- Smith, L.R.; Cho, S.; Discher, D.E. Stem Cell Differentiation is Regulated by Extracellular Matrix Mechanics. Physiology 2018, 33, 16–25. [Google Scholar] [CrossRef]
- Watt, F.M.; Huck, W.T. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 2013, 14, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Parmaksiz, M.; Dogan, A.; Odabas, S.; Elçin, A.E.; Elçin, Y.M. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater. 2016, 11, 022003. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, F.C.P.; Morrissey, J.; Monnerat, G.; Domont, G.B.; Nogueira, F.C.S.; Hochman-Mendez, C. Decellularized Extracellular Matrix Powder Accelerates Metabolic Maturation at Early Stages of Cardiac Differentiation in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells Tissues Organs 2023, 212, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Ott, H.C.; Matthiesen, T.S.; Goh, S.K.; Black, L.D.; Kren, S.M.; Netoff, T.I.; Taylor, D.A. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med. 2008, 14, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Hong, H.; Hu, R.; Liu, J.; Liu, C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact. Mater. 2021, 10, 15–31. [Google Scholar] [CrossRef]
- Perea-Gil, I.; Gálvez-Montón, C.; Prat-Vidal, C.; Jorba, I.; Segú-Vergés, C.; Roura, S.; Soler-Botija, C.; Iborra-Egea, O.; Revuelta-López, E.; Fernández, M.A.; Farré, R.; Navajas, D.; Bayes-Genis, A. Head-to-head comparison of two engineered cardiac grafts for myocardial repair: From scaffold characterization to pre-clinical testing. Sci. Rep. 2018, 8, 6708. [Google Scholar] [CrossRef]
- Belviso, I.; Romano, V.; Sacco, A.M.; Ricci, G.; Massai, D.; Cammarota, M.; Catizone, A.; Schiraldi, C.; Nurzynska, D.; Terzini, M.; Aldieri, A.; Serino, G.; Schonauer, F.; Sirico, F.; D'Andrea, F.; Montagnani, S.; Di Meglio, F.; Castaldo, C. Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 229. [Google Scholar] [CrossRef]
- Romano, V.; Belviso, I.; Cozzolino, D.; Sacco, A.M.; Schonauer, F.; Nurzynska, D.; Di Meglio, F.; Castaldo, C. Decellularization for the Preparation of Highly Preserved Human Acellular Skin Matrix for Regenerative Medicine. J. Vis. Exp. 2021, 175. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, L.L.; Zhang, F.; Bi, W.; Zhang, P.; Yu, X.J.; Rao, S.L.; Wang, S.H.; Li, Q.; Ding, C.; Jin, Y.; Liu, Z.M.; Yang, H.T. Dual human iPSC-derived cardiac lineage cell-seeding extracellular matrix patches promote regeneration and long-term repair of infarcted hearts. Bioact. Mater. 2023, 28, 206–226. [Google Scholar] [CrossRef]
- Lee, P.F.; Chau, E.; Cabello, R.; Yeh, A.T.; Sampaio, L.C.; Gobin, A.S.; Taylor, D.A. Inverted orientation improves decellularization of whole porcine hearts. Acta Biomater. 2017, 49, 181–191. [Google Scholar] [CrossRef]
- Rouwkema, J.; Khademhosseini, A. Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks. Trends Biotechnol. 2016, 34, 733–745. [Google Scholar] [CrossRef]
- Gao, L.P.; Du, M.J.; Lv, J.J.; Schmull, S.; Huang, R.T.; Li, J. Use of human aortic extracellular matrix as a scaffold for construction of a patient-specific tissue engineered vascular patch. Biomed Mater. 2017, 12, 065006. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, B.; Ghavami. L.; Derakhshankhah, H.; Zangene, E.; Razmi, M.; Jaymand, M.; Zarrintaj, P.; Zarghami, N.; Jaafari, M.R.; Moallem Shahri, M.; Moghaddasian, A.; Tayebi, L.; Izadi, Z. Biomaterials in Valvular Heart Diseases. Front. Bioeng. Biotechnol. 2020, 8, 529244. [Google Scholar] [CrossRef]
- Lee, J.H.; Rim, Y.S.; Min, W.K.; Park, K.; Kim, H.T.; Hwang, G.; Kim, H.J. Biocompatible and biodegradable neuromorphic device based on hyaluronic acid for implantable bioelectronics. Adv. Funct. Mater. 2021, 31, 2107074. [Google Scholar] [CrossRef]
- Todros, S.; Todesco, M.; Bagno, A. Biomaterials and their biomedical applications: From replacement to regeneration. Processes 2021, 9, 1949. [Google Scholar] [CrossRef]
- Smith, L.J.; Li, P.; Holland, M.R.; Ekser, B. FABRICA: A Bioreactor Platform for Printing, Perfusing, Observing, & Stimulating 3D Tissues. Sci. Rep. 2018, 8, 7561. [Google Scholar] [CrossRef]
- Ovando-Roche, P.; West, E.L.; Branch, M.J.; Sampson, R.D.; Fernando, M.; Munro, P.; Georgiadis, A.; Rizzi, M.; Kloc, M.; Naeem, A.; Ribeiro, J.; Smith, A.J.; Gonzalez-Cordero, A.; Ali, R.R. Use of bioreactors for culturing human retinal organoids improves photoreceptor yields. Stem Cell Res. Ther. 2018, 9, 156. [Google Scholar] [CrossRef]
- Pakostova, E.; Johnson, D.B. Microbial generation of sulfuric acid from granular elemental sulfur in laboratory-scale bioreactors. Hydrometallurgy 2019, 190, 105152. [Google Scholar] [CrossRef]
- Chen, A.M.; Lashmet, M.; Isidan, A.; Sterner, J.L.; Walsh, J.; Koehler, C.; Li, P.; Ekser, B.; Smith, L. Oxygenation Profiles of Human Blood, Cell Culture Medium, and Water for Perfusion of 3D-Bioprinted Tissues using the FABRICA Bioreactor Platform. Sci. Rep. 2020, 10, 7237. [Google Scholar] [CrossRef]
- Lee, J. Development of a model to determine mass transfer coefficient and oxygen solubility in bioreactors. Heliyon 2017, 3, e00248. [Google Scholar] [CrossRef]
- Ginai, M.; Elsby, R.; Hewitt, C.J.; Surry, D.; Fenner, K.; Coopman, K. The use of bioreactors as in vitro models in pharmaceutical research. Drug. Discov. Today 2013, 18, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.K.; Yoo, J.J.; Atala, A. Regenerative medicine approaches for tissue engineered heart valves. In Principles of Regenerative Medicine, 3nd ed.; Academic Press, 2019; pp. 1041–1058. [Google Scholar]
- Dupard, S.J.; Garcia, A.G.; Bourgine, P.E. Customizable 3D printed perfusion bioreactor for the engineering of stem cell microenvironments. Front. Bioeng. Biotechnol. 2023, 10, 1081145. [Google Scholar] [CrossRef] [PubMed]
- Schmid, J.; Schwarz, S.; Meier-Staude, R.; Sudhop, S.; Clausen-Schaumann, H.; Schieker, M.; Huber, R. A Perfusion Bioreactor System for Cell Seeding and Oxygen-Controlled Cultivation of Three-Dimensional Cell Cultures. Tissue Eng. Part C Methods 2018, 24, 585–595. [Google Scholar] [CrossRef]
- Lerman, M.J.; Lembong, J.; Gillen, G.; Fisher, J.P. 3D printing in cell culture systems and medical applications. Appl. Phys. Rev. 2018, 5, 041109. [Google Scholar] [CrossRef]
- Putame, G.; Gabetti, S.; Carbonaro, D.; Di Meglio, F.; Romano, V.; Sacco, A.M.; Belviso, I.; Serino, G.; Bignardi, C.; Morbiducci, U.; Castaldo, C.; Massai, D. Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs. Med. Eng. Phys. 2020, 84, 1–9. [Google Scholar] [CrossRef]
- Scholp, A.J.; Jensen, J.; Chinnathambi, S.; Atluri, K.; Mendenhall, A.; Fowler, T.; Salem, A.K.; Martin, J.A.; Sander, E.A. Force-Bioreactor for Assessing Pharmacological Therapies for Mechanobiological Targets. Front Bioeng Biotechnol. 2022, 10, 907611. [Google Scholar] [CrossRef]
- Ganeeva, I.; Zmievskaya, E.; Valiullina, A.; Kudriaeva, A.; Miftakhova, R.; Rybalov, A.; Bulatov, E. Recent Advances in the Development of Bioreactors for Manufacturing of Adoptive Cell Immunotherapies. Bioengineering 2022, 9, 808. [Google Scholar] [CrossRef]
- Yang, C.; Kong, L.; Zhang, Z. Bioreactor: Intelligent platform for drug delivery. Nano Today 2022, 44, 101481. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z.; Chen, T.; Zhao, X. Development of Novel Bioreactor Control Systems Based on Smart Sensors and Actuators. Front. Bioeng. Biotechnol. 2020, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Figallo, E.; Cannizzaro, C.; Gerecht, S.; Burdick, J.A.; Langer, R.; Elvassore, N.; Vunjak-Novakovic, G. Micro-bioreactor array for controlling cellular microenvironments. Lab. Chip 2007, 7, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Chauhan, V.M.; Ghaemmaghami, A.M.; Aylott, J.W. New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol. Lett. 2019, 41, 1–25. [Google Scholar] [CrossRef]
- O'Mara, P.; Farrell, A.; Bones, J.; Twomey, K. Staying alive! Sensors used for monitoring cell health in bioreactors. Talanta 2018, 176, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Busse, C.; Biechele, P.; de Vries, I.; Reardon, K.F.; Solle, D.; Scheper, T. Sensors for disposable bioreactors. Eng Life Sci. 2017, 17, 940–952. [Google Scholar] [CrossRef]
- Bluma, A.; Höpfner, T.; Lindner, P.; Rehbock, C.; Beutel, S.; Riechers, D.; Hitzmann, B.; Scheper, T. In-situ imaging sensors for bioprocess monitoring: state of the art. Anal. Bioanal. Chem. 2010, 398, 2429–38. [Google Scholar] [CrossRef]
- Gruber, P.; Marques, M.P.C.; Szita, N.; Mayr, T. Integration and application of optical chemical sensors in microbioreactors. Lab. Chip 2017, 17, 2693–2712. [Google Scholar] [CrossRef]
- Shkilnyy, A.; Dubois, J.; Sabra, G.; Sharp, J.; Gagnon, S.; Proulx, P.; Vermette, P. Bioreactor controlled by PI algorithm and operated with a perfusion chamber to support endothelial cell survival and proliferation. Biotechnol. Bioeng. 2012, 109, 1305–1313. [Google Scholar] [CrossRef]
- Bizon, K.; Tabiś, B. Problems in volumetric flow rate and liquid level control of a continuous stirred tank bioreactor with structured and unstructured kinetics. Chem. Eng. Re.s Des. 2021, 175, 309–319. [Google Scholar] [CrossRef]
- Ylä-Herttuala, S.; Baker, A.H. Cardiovascular Gene Therapy: Past, Present, and Future. Mol. Ther. 2017, 25, 1095–1106. [Google Scholar] [CrossRef]
- Shimamura, M.; Nakagami, H.; Sanada, F.; Morishita, R. Progress of Gene Therapy in Cardiovascular Disease. Hypertension 2020, 76, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, J.A.; Donahue, J.K. Gene therapy to treat cardiovascular disease. J. Am. Heart. Assoc 2013, 2, e000119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhan, Q.; Huang, B.; Wang, Y.; Wang, X. AAV-mediated gene therapy: Advancing cardiovascular disease treatment. Front. Cardiovasc. Med. 2022, 9, 952755. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Xuan, X.; Zhang, R.; Hu, J.; Dong, H. Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Front. Cardiovasc. Med. 2021, 8, 760140. [Google Scholar] [CrossRef]
- Sleeper, M.M.; Bish, L.T.; Sweeney, H.L. Gene therapy in large animal models of human cardiovascular genetic disease. ILAR. J. 2009, 50, 199–205. [Google Scholar] [CrossRef]
- Korpela, H.; Siimes, S.; Ylä-Herttuala, S. Large Animal Model for Evaluating the Efficacy of the Gene Therapy in Ischemic Heart. J. Vis. Exp. 2021, 175. [Google Scholar] [CrossRef]
- Gopinath, C.; Nathar, T.J.; Ghosh, A.; Hickstein, D.D.; Nelson, E.J.R. Contemporary Animal Models For Human Gene Therapy Applications. Curr. Gene Ther. 2015, 15, 531–540. [Google Scholar] [CrossRef]
- Giacca, M.; Zacchigna, S. VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther. 2012, 19, 622–629. [Google Scholar] [CrossRef]
- del Monte, F.; Harding, S.E.; Schmidt, U.; Matsui, T.; Kang, Z.B.; Dec, G.W.; Gwathmey, J.K.; Rosenzweig, A.; Hajjar, R.J. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999, 100, 2308–2311. [Google Scholar] [CrossRef]
- Askari, A.T.; Unzek, S.; Popovic, Z.B.; Goldman, C.K.; Forudi, F.; Kiedrowski, M.; Rovner, A.; Ellis, S.G.; Thomas, J.D.; Di Corleto, P.E.; Topol, E.J.; Penn, M.S. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003, 362, 697–703. [Google Scholar] [CrossRef]
- Hammond, H.K.; Penny, W.F.; Traverse, J.H.; Henry, T.D.; Watkins, M.W.; Yancy, C.W.; Sweis, R.N.; Adler, E.D.; Patel, A.N.; Murray, D.R.; Ross, R.S.; Bhargava, V.; Maisel, A.; Barnard, D.D.; Lai, N.C.; Dalton, N.D.; Lee, M.L.; Narayan, S.M.; Blanchard, D.G.; Gao, M.H. Intracoronary Gene Transfer of Adenylyl Cyclase 6 in Patients With Heart Failure: A Randomized Clinical Trial. JAMA Cardiol. 2016, 1, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Raake, P.W.; Tscheschner, H.; Reinkober, J.; Ritterhoff, J.; Katus, H.A.; Koch, W.J.; Most, P. Gene therapy targets in heart failure: the path to translation. Clin. Pharmacol. Ther. 2011, 90, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Tilemann, L.; Fish, K.; Hajjar, RJ. Gene delivery methods in cardiac gene therapy. J Gene Med. 2011, 13, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Wasala, N.B.; Shin, J.H.; Duan, D. The evolution of heart gene delivery vectors. J. Gene Med. 2011, 13, 557–65. [Google Scholar] [CrossRef]
- Katz, M.G.; Swain, J.D.; White, J.D.; Low, D.; Stedman, H.; Bridges, C.R. Cardiac gene therapy: optimization of gene delivery techniques in vivo. Hum. Gene Ther. 2010, 21, 371–380. [Google Scholar] [CrossRef]
- Hoang, P.; Wang, J.; Conklin, B.R.; Healy, K.E.; Ma, Z. Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nat Protoc. 2018, 13, 723–737. [Google Scholar] [CrossRef]
- Mills, R.; Hudson, J. An in vitro model of myocardial infarction. Nat. Biomed. Eng. 2020, 4, 366–367. [Google Scholar] [CrossRef]
- Hofbauer, P.; Jahnel, S.M.; Papai, N.; Giesshammer, M.; Deyett, A.; Schmidt, C.; Penc, M.; Tavernini, K.; Grdseloff, N.; Meledeth, C.; Ginistrelli, L.C.; Ctortecka, C.; Šalic, Š.; Novatchkova, M.; Mendjan, S. Cardioids reveal self-organizing principles of human cardiogenesis. Cell 2021, 184, 3299–3317.e22. [Google Scholar] [CrossRef]
- Lewis-Israeli, Y.R.; Wasserman, A.H.; Aguirre, A. Heart Organoids and Engineered Heart Tissues: Novel Tools for Modeling Human Cardiac Biology and Disease. Biomolecules 2021, 11, 1277. [Google Scholar] [CrossRef]
- Rauth, S.; Karmakar, S.; Batra, S.K.; Ponnusamy, M.P. Recent advances in organoid development and applications in disease modeling. Biochim. Biophys. Acta. Rev. Cancer. 2021, 1875, 188527. [Google Scholar] [CrossRef]
- Yan, J.; Li, Z.; Guo, J.; Liu, S.; Guo, J. Organ-on-a-chip: A new tool for in vitro research. Biosens Bioelectron. 2022, 216, 114626. [Google Scholar] [CrossRef]
- Monteduro, A.G.; Rizzato, S.; Caragnano, G.; Trapani, A.; Giannelli, G.; Maruccio, G. Organs-on-chips technologies - A guide from disease models to opportunities for drug development. Biosens Bioelectron. 2023, 231, 115271. [Google Scholar] [CrossRef] [PubMed]
- Low, L.A.; Tagle, D.A. Organs-on-chips: Progress, challenges, and future directions. Exp. Biol. Med. 2017, 242, 1573–1578. [Google Scholar] [CrossRef] [PubMed]
- Low, L.A.; Sutherland, M.; Lumelsky, N.; Selimovic, S.; Lundberg, M.S.; Tagle, D.A. Organs-on-a-Chip. Adv. Exp. Med. Biol. 2020, 1230, 27–42. [Google Scholar] [CrossRef]
- Ma, C.; Peng, Y.; Li, H.; Chen, W. Organ-on-a-Chip: A New Paradigm for Drug Development. Trends Pharmacol. Sci. 2021, 42, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liu, J.; Wang, X.; Feng, L.; Wu, J.; Zhu, X.; Wen, W.; Gong, X. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed. Eng. Online 2020, 19, 9. [Google Scholar] [CrossRef]
- Paloschi, V.; Sabater-Lleal, M.; Middelkamp, H.; Vivas, A.; Johansson, S.; van der Meer, A.; Tenje, M.; Maegdefessel, L. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc. Res. 2021, 117, 2742–2754. [Google Scholar] [CrossRef]
- Inbody, S.C.; Sinquefield, B.E.; Lewis, J.P.; Horton, R.E. Biomimetic microsystems for cardiovascular studies. Am J Physiol Cell Physiol 2021, 320, C850–C872. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Arneri, A.; Bersini, S.; Shin, S.R.; Zhu, K.; Goli-Malekabadi, Z.; Aleman, J.; Colosi, C.; Busignani, F.; Dell'Erba, V.; Bishop, C.; Shupe, T.; Demarchi, D.; Moretti, M.; Rasponi, M.; Dokmeci, M.R.; Atala, A.; Khademhosseini, A. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016, 110, 45–59. [Google Scholar] [CrossRef]
- Lim, S.; Kim, S.W.; Kim, I.K.; Song, B.W.; Lee, S. Organ-on-a-chip: Its use in cardiovascular research. Clin Hemorheol. Microcirc. 2023, 83, 315–339. [Google Scholar] [CrossRef]
- Wu, H.; Shi, S.; Liu, Y.; Zhang, Q.; Lam, R.H.W.; Lim, C.T.; Hu, J. Recent progress of organ-on-a-chip towards cardiovascular diseases: advanced design, fabrication, and applications. Biofabrication 2023, 15. [Google Scholar] [CrossRef]
- Rahmani Dabbagh, S.; Rezapour Sarabi, M.; Birtek, M.T.; Mustafaoglu, N.; Zhang, Y.S.; Tasoglu, S. 3D bioprinted organ-on-chips. Aggregate 2023, 4, e197. [Google Scholar] [CrossRef]
- Marsano, A.; Conficconi, C.; Lemme, M.; Occhetta, P.; Gaudiello, E.; Votta, E.; Cerino, G.; Redaelli, A.; Rasponi, M. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab. Chip. 2016, 16, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xiao, Z.; Lv, X.; Zhang, T.; Liu, H. Fabrication and Biomedical Applications of Heart-on-a-chip. Int. J. Bioprint. 2021, 7, 370. [Google Scholar] [CrossRef] [PubMed]
- Ronaldson-Bouchard, K.; Ma, S.P.; Yeager, K.; Chen, T.; Song, L.; Sirabella, D.; Morikawa, K.; Teles, D.; Yazawa, M.; Vunjak-Novakovic, G. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 2018, 556, 239–243. [Google Scholar] [CrossRef]
- Leung, C.M.; de Haan, P.; Bouchard, K.R.; Kim, G.A.; Ko, J.; Rho, H.S.; Chen, Z.; Habibovic, P.; Jeon, N.L.; Takayama, S.; Shuler, M.L.; Novakovic, G.V.; Frey, O.; Verpoorte, E.; Toh, Y.C. A guide to the organ-on-a-chip. Nat. Rev. Methods. Primers 2 2022, 2, 33. [Google Scholar] [CrossRef]
- Skardal, A.; Murphy, S.V.; Devarasetty, M.; Mead, I.; Kang, H.W.; Seol, Y.J.; Shrike Zhang, Y.; Shin, S.R.; Zhao, L.; Aleman, J.; Hall, A.R.; Shupe, T.D.; Kleensang, A.; Dokmeci, M.R.; Jin Lee, S.; Jackson, J.D.; Yoo, J.J.; Hartung, T.; Khademhosseini, A.; Soker, S.; Bishop, C.E.; Atala, A. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 2017, 7, 8837. [Google Scholar] [CrossRef]
- Clarke, G.A.; Hartse, B.X.; Niaraki Asli, A.E.; Taghavimehr, M.; Hashemi, N.; Abbasi Shirsavar, M.; Montazami, R.; Alimoradi, N.; Nasirian, V.; Ouedraogo, L.J.; Hashemi, N.N. Advancement of Sensor Integrated Organ-on-Chip Devices. Sensors 2021, 21, 1367. [Google Scholar] [CrossRef]
- Shirure, V.S.; Hughes, C.C.W.; George, S.C. Engineering Vascularized Organoid-on-a-Chip Models. Annu Rev Biomed. Eng. 2021, 23, 141–167. [Google Scholar] [CrossRef]
| Biomaterial | Source | Advantages | Formulation | Properties and Functions | Ref. |
|---|---|---|---|---|---|
| Collagen | Human/animal | High biocompatibility, biodegradability, excellent mechanical properties | Cardiac patches or injectable hydrogels | Promote cell adhesion, migration and proliferation | [199,200,201,202,203,204,205,206] |
| Fibrin | Fibrinogen | Biocompatibility | Gels or hydrogels | Promote cell adhesion, proliferation and migration, influence cell behaviour and promote tissue healing | [207,208,209] |
| Gelatin | Collagen | Biocompatibility, biodegradability, low toxicity | Gelatin-based materials used to create cardiac patches, injectable matrices and 3D constructs | Promote cell adhesion, proliferation and differentiation | [210,211,212] |
| Silk | Silkworm cocoon | Mechanical properties, high tensile strength and elasticity | Cardiac patches, tissue-engineered constructs | Provide mechanical support, cell attachment and support tissue remodelling | [213,214,215] |
| Chitosan | Exoskeleton of crustaceans and insects | Antibacterial properties, mechanical strength, biocompatibility, biodegradability | 3D-printed scaffolds for skin and bone and cardiac patches | Enhance cell viability, improving contractile function and promoting neovascularization in the heart | [216,217,218] |
| Alginate | Brown seaweed | Bio-absorbability, biocompatibility | Hydrogels, cell encapsulation systems, microbeads | Protect cells and promote the formation of functional cardiac tissue | [219,220,221] |
| Hyaluronic Acid | ECM component | Biocompatibility, biodegradability and water retention capacity | Hydrogels, injectable matrices and 3D constructs | Support cell migration, proliferation and tissue regeneration Promote cell adhesion and proliferation and modulate cell behaviour | [222,223,224,225] |
| Decellularized extracellular matrix | Human or animal tissues | Biocompatibility, safety and efficacy | Cardiac patches | Preserve tissue native microenvironment, promote cell proliferation, and integration and differentiation | [226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
