Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Design, BSA Binding, Stopped-Flow Kinetic, Mechanistic, Molecular Docking, and Biological Evaluation of Hy-droxychloroquine-Based Chitosan Nanoparticles for Enhancing Anticancer Activity in A549 Lung Cancer Cell Line

Version 1 : Received: 31 July 2023 / Approved: 1 August 2023 / Online: 2 August 2023 (04:54:14 CEST)

A peer-reviewed article of this Preprint also exists.

Elshami, F.I.; Shereef, H.A.; El-Mehasseb, I.M.; Shaban, S.Y.; van Eldik, R. Hydroxychloroquine-Loaded Chitosan Nanoparticles Induce Anticancer Activity in A549 Lung Cancer Cells: Design, BSA Binding, Molecular Docking, Mechanistic, and Biological Evaluation. Int. J. Mol. Sci. 2023, 24, 14103. Elshami, F.I.; Shereef, H.A.; El-Mehasseb, I.M.; Shaban, S.Y.; van Eldik, R. Hydroxychloroquine-Loaded Chitosan Nanoparticles Induce Anticancer Activity in A549 Lung Cancer Cells: Design, BSA Binding, Molecular Docking, Mechanistic, and Biological Evaluation. Int. J. Mol. Sci. 2023, 24, 14103.

Abstract

The current study describes the preparation of chitosan nanoparticles (CNPs) using hydroxychloroquine (HCQ), widely used in traditional medicine due to its diverse phar-macological and medicinal uses. This work aims to combine the HCQ drug with CS NPs to generate a novel nanocomposite with improved characteristics and bioavailability. HCQ@CS NPs is roughly shaped like roadways and has a smooth surface with an average size of 159.3±7.1 nm, a PdI of 0.224±0.101, and a zeta potential of +46.6±0.8 mV. To aid in the development of pharmaceutical systems for use in cancer therapy, the binding mech-anism and affinity of the interaction between HCQ and HCQ@CS NPs and BSA were ex-amined using stopped-flow, other spectroscopic approaches, supplemented by molecular docking analysis. HCQ and HCQ@CS NPs binding with BSA is driven by a ground-state complex formation that may be accompanied by a non-radiative energy transfer process, and binding constants indicated that HCQ@CS NPs-BSA was more stable than HCQ-BSA. The stopped-flow analysis demonstrated that, in addition to increasing BSA affinity, the nano formulation HCQ@CS NPS changes the binding process and may open up new routes for interaction. Docking experiments verified the development of the HCQ-BSA complex, with HCQ binding to the site I on the BSA structure, primarily with the amino acids Thr 578, Gln 579, Gln 525, Tyr 400, and Asn 404. Furthermore, the nano-formulation HCQ@CS NPS not only increased cytotoxicity against the A549 lung cancer cell line (IC50 = 28.57±1.72 g/ml) compared to HCQ (102.21±0.67) g/ml), but also exhibited higher anti-bacterial activity against both Gram-positive and Gram-negative bacteria when compared to HCQ and chloramphenicol which in agreement with the binding constants. The nano formulation developed in this study may offer a viable therapy option for A549 lung cancer.

Keywords

A549 lung cancer; nanoparticles; cell-penetration, drug affinity, dissociation constants; molecular docking; antibacterial; hydroxychloroquine

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.