Submitted:
27 July 2023
Posted:
28 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Research flow chart
2.2. On-site measurement
2.3. Experimental Instruments and Equipment
2.4. Image Recognition Model
2.5. Correlation Statistical Analysis
3. Results
3.1. Air quality data inside the sow farrowing room
3.2. Correlation between air quality and sow feed intake
3.3. The correlation between air quality and fecal health status
3.4. Correlation between food intake and fecal health status
3.5. Assessment of Time Delay Situation
4. Discussion
4.1. Air Quality in Sow Farrowing Rooms
4.2. Assessing Correlation of Air Quality, Feed Intake, and Fecal Health Status
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
| AI | Artificial Intelligence | |
| COVID-19 | Coronavirus disease 2019 | |
| EPA | Environmental Protection Administration | |
| H2S | hydrogen sulfide | |
| IoT | Internet of thing | |
| PLF | Precision Livestock Farming | |
| R-CNN | Region Convolution Neural Network | |
| TSN | temporal segment networks | |
| YOLO | You Only Look Once, an object detection | |
| CO2 | carbon dioxide | ppm |
| NH3 | Ammonia | ppm |
| PM10 | particulate matter 10 | μg/m3 |
| PM2.5 | particulate matter 2.5 | μg/m3 |
| RH | relative humidity | % |
| TEMP | temperature | oC |
| TVOC | Total Volatile Organic Compound | ppm |
References
- Wang, S.; Jiang, H.; Qiao, Y.; Jiang, S.; Lin, H.; Sun, Q. The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming. Sensors 2022, 22, 6541. [Google Scholar] [CrossRef] [PubMed]
- García, R.; Aguilar, J.; Toro, M.; Pinto, A.; Rodríguez, P. A systematic literature review on the use of machine learning in precision livestock farming. Comput Electron Agr 2020, 179, 105826. [Google Scholar] [CrossRef]
- Rosa, G.J.M. Grand Challenge in Precision Livestock Farming. Frontiers in Animal Science 2021, 2. [Google Scholar] [CrossRef]
- Thomas, M. Banhazi, H.L., J L Black, H Crabtree, P Schofield, M Tscharke, D Berckmans. Precision Livestock Farming: An international review of scientific and commercial aspects. Int J Agric & Biol Eng 2012, 5, 1. [Google Scholar] [CrossRef]
- Shao, H.; Pu, J.; Mu, J. Pig-Posture Recognition Based on Computer Vision: Dataset and Exploration. Animals 2021, 11, 1295. [Google Scholar] [CrossRef]
- Zhang, K.; Li, D.; Huang, J.; Chen, Y. Automated Video Behavior Recognition of Pigs Using Two-Stream Convolutional Networks. Sensors 2020, 20, 1085. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Ma, C.; Guo, Y.; Huang, W.; Ruan, C. Image motion feature extraction for recognition of aggressive behaviors among group-housed pigs. Comput Electron Agr 2017, 142, 380–387. [Google Scholar] [CrossRef]
- Viazzi, S.; Ismayilova, G.; Oczak, M.; Sonoda, L.T.; Fels, M.; Guarino, M.; Vranken, E.; Hartung, J.; Bahr, C.; Berckmans, D. Image feature extraction for classification of aggressive interactions among pigs. Comput Electron Agr 2014, 104, 57–62. [Google Scholar] [CrossRef]
- Yang, Q.; Xiao, D.; Lin, S. Feeding behavior recognition for group-housed pigs with the Faster R-CNN. Comput Electron Agr 2018, 155, 453–460. [Google Scholar] [CrossRef]
- Zhu, W.-x.; Guo, Y.-z.; Jiao, P.-p.; Ma, C.-h.; Chen, C. Recognition and drinking behaviour analysis of individual pigs based on machine vision. Livestock Science 2017, 205, 129–136. [Google Scholar] [CrossRef]
- Kim, K.Y.; Ko, H.J.; Lee, K.J.; Park, J.B.; Kim, C.N. Temporal and spatial distributions of aerial contaminants in an enclosed pig building in winter. Environmental Research 2005, 99, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Verstegen, M.W.A.; Hel, W.; Jongebreur, A.A.; Enneman, G. The Influence of Ammonia and Humidity on Activity and Energy Balance Data in Groups of Pigs. Zeitschrift für Tierphysiologie Tierernährung und Futtermittelkunde 2009, 37, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Geers, R.; Dellaert, B.; Goedseels, V.; Hoogerbrugge, A.; Vranken, E.; Maes, F.; Berckmans, D. An assessment of optimal air temperatures in pig houses by the quantification of behavioural and health-related problems. Animal Production 1989, 48, 571–578. [Google Scholar] [CrossRef]
- Huynh, T.T.T.; Aarnink, A.J.A.; Verstegen, M.W.A.; Gerrits, W.J.J.; Heetkamp, M.J.W.; Kemp, B.; Canh, T.T. Effects of increasing temperatures on physiological changes in pigs at different relative humidities1. Journal of Animal Science 2005, 83, 1385–1396. [Google Scholar] [CrossRef]
- Huynh, T.T.T.; Aarnink, A.J.A.; Gerrits, W.J.J.; Heetkamp, M.J.H.; Canh, T.T.; Spoolder, H.A.M.; Kemp, B.; Verstegen, M.W.A. Thermal behaviour of growing pigs in response to high temperature and humidity. Applied Animal Behaviour Science 2005, 91, 1–16. [Google Scholar] [CrossRef]
- Sejian, V.; Bhatta, R.; Gaughan, J.B.; Dunshea, F.R.; Lacetera, N. Review: Adaptation of animals to heat stress. animal 2018, 12, s431–s444. [Google Scholar] [CrossRef]
- Lee, H.; Perkins, C.; Gray, H.; Hajat, S.; Friel, M.; Smith, R.P.; Williamson, S.; Edwards, P.; Collins, L.M. Influence of temperature on prevalence of health and welfare conditions in pigs: time-series analysis of pig abattoir inspection data in England and Wales. Epidemiol Infect 2020, 148, e30. [Google Scholar] [CrossRef]
- Arulmozhi, E.; Basak, J.K.; Sihalath, T.; Park, J.; Kim, H.T.; Moon, B.E. Machine Learning-Based Microclimate Model for Indoor Air Temperature and Relative Humidity Prediction in a Swine Building. Animals 2021, 11, 222. [Google Scholar] [CrossRef]
- Liu, P.; Piao, X.; Thacker, P.; Zeng, Z.k.; Li, P.; Wang, D.; Kim, S. Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with E. coli K88. Journal of animal science 2010, 88, 3871–3879. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv pre-print server, 2016; arxiv:1506.02640. [Google Scholar]
- Metz, J.A.; Finn, A. Influenza and humidity--Why a bit more damp may be good for you! J Infect 2015, 71 Suppl 1, S54–58. [Google Scholar] [CrossRef]
- Environmental Protection Administration Executive Yuan, R. O.C. Indoor Air Quality Standards. 2012.
- Mishra, R.; Krishnamoorthy, P.; Gangamma, S.; Raut, A.A.; Kumar, H. Particulate matter (PM(10)) enhances RNA virus infection through modulation of innate immune responses. Environ Pollut 2020, 266, 115148. [Google Scholar] [CrossRef] [PubMed]
- Arruda, A.G.; Tousignant, S.; Sanhueza, J.; Vilalta, C.; Poljak, Z.; Torremorell, M.; Alonso, C.; Corzo, C.A. Aerosol Detection and Transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): What Is the Evidence, and What Are the Knowledge Gaps? Viruses 2019, 11, 712. [Google Scholar] [CrossRef] [PubMed]
- Neumann, E.J.; Kliebenstein, J.B.; Johnson, C.D.; Mabry, J.W.; Bush, E.J.; Seitzinger, A.H.; Green, A.L.; Zimmerman, J.J. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. Journal of the American Veterinary Medical Association 2005, 227, 385–392. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Robarge, W.P.; Xiao, C.; Heber, A.J. Volatile organic compounds at swine facilities: A critical review. Chemosphere 2012, 89, 769–788. [Google Scholar] [CrossRef] [PubMed]
- Anundi, H.; Lind, M.-L.; Friis, L.; Itkes, N.; Langworth, S.; Edling, C. High exposures to organic solvents among graffiti removers. Int Arch Occ Env Hea 1993, 65, 247–251. [Google Scholar] [CrossRef] [PubMed]


| Column | Abnormal days from 2023/3/16 to 2023/4/12 | Abnormal days from 2023/3/26 to 2023/4/12 |
|---|---|---|
| 5 | 10 | 7 |
| 6 | 6 | 0 |
| 14 | 5 | 2 |
| 15 | 7 | 2 |
| 16 | 6 | 0 |
| 17 | 10 | 5 |
| 18 | 5 | 0 |
| 25 | 2 | 0 |
| 26 | 3 | 0 |
| 27 | 0 | 0 |
| SAQ100 Wall-mounted Air Quality Monitor | |
|---|---|
| Monitoring Parameters | Temperature, Humidity, PM2.5, PM10, CO2, TVOC |
| Measurement Range | Temperature: -30~100OC Humidity: 0~100%RH PM2.5、PM10: 0~999 µg/m3 CO2: 0~5000 ppm TVOC: 0.125~0.6 ppm |
| Sensors | Temperature, Humidity: Digital sensors PM2.5、PM10: Optical sensors CO2: NDIR infrared sensor TVOC: Semiconductor-based |
| Accuracy | Temperature: ±5 OC Humidity: ±3%RH PM2.5、PM10:< 50µg/m±10%;> 50 µg/m3±5 µg/m3 |
| Response Time | Temperature, Humidity: 1 second PM2.5、PM10:<10 second CO2:<20 second TVOC:<60 second |
| Operating Environment | 0~50 OC |
| Mean | Standard Error | Median | Minimum | Maximum | |
|---|---|---|---|---|---|
| TEMP (oC) | 22.73 | 0.01 | 22 | 17.3 | 27.8 |
| RH (%) | 73.16 | 0.03 | 74.5 | 48.5 | 87.2 |
| CO2 (µg/m3) | 476.36 | 0.24 | 464.2 | 379.2 | 661 |
| PM2.5 (µg/m3) | 36.91 | 0.08 | 33 | 3 | 590 |
| PM10 (µg/m3) | 38.68 | 0.09 | 35 | 4 | 598 |
| TVOC (ppm) | 0.16 | 0.00 | 0.2 | 0.1 | 0.4 |
| Column 5 | Column 14 | Column 15 | Column 17 | |||||
|---|---|---|---|---|---|---|---|---|
| Predictor | OR (95% CI) |
p-value | OR (95% CI) |
p-value | OR (95% CI) |
p-value | OR (95% CI) |
p-value |
| TEMP | 0.18 (0.17-0.19) |
<0.001* | 1.01 (0.99-1.02) |
0.24 | 1.82 (1.76-1.88) |
<0.001* | 1.16 (1.12-1.63) |
<0.001* |
| RH | 1.03 (1.03-1.04) |
<0.001* | 0.99 (0.99-1.00) |
<0.001* | 1.03 (1.03-1.04) |
<0.001* | 0.98 (0.97-0.98) |
<0.001* |
| CO2 | 1.01 (1.01-1.01) |
<0.001* | 1.00 (1.00-1.00) |
0.48 | 1.03 (1.02-1.03) |
<0.001* | 1.00 (1.00-1.00) |
<0.001* |
| PM2.5 | 1.17 (1.07-1.29) |
<0.001* | 0.71 (0.67-0.76) |
<0.001* | 1.26 (1.11-1.41) |
<0.001* | 0.65 (0.61-0.69) |
<0.001* |
| PM10 | 0.83 (0.76-0.91) |
<0.001* | 1.37 (1.29-1.46) |
<0.001* | 0.76 (1.67-0.85) |
<0.001* | 1.53 (1.43-1.63) |
<0.001* |
| TVOC | 4.99 (2.88-8.67) |
<0.001* | 7.56 (5.03-11.36) |
<0.001* | 0.11 (0.15-0.23) |
<0.001* | 1.68 (1.09-2.61) |
0.02 |
| B | S.E. | Wald | DF | p-value | Exp(B) | Exp(B) 95% Confidence Interval |
||
|---|---|---|---|---|---|---|---|---|
| Lower | Upper | |||||||
| TEMP | 0.047 | 0.008 | 36.929 | 1 | <.001* | 1.048 | 1.032 | 1.064 |
| RH | 0.05 | 0.002 | 1005.601 | 1 | <.001* | 1.052 | 1.048 | 1.055 |
| CO2 | -0.011 | 0 | 1309.702 | 1 | <.001* | 0.989 | 0.989 | 0.99 |
| PM2.5 | -0.089 | 0.035 | 6.588 | 1 | 0.01* | 0.915 | 0.855 | 0.979 |
| PM10 | 0.088 | 0.034 | 6.706 | 1 | 0.01* | 1.092 | 1.022 | 1.168 |
| TVOC | -0.413 | 0.222 | 3.458 | 1 | 0.063 | 0.662 | 0.428 | 1.023 |
| Constant | -0.99 | 0.319 | 9.623 | 1 | 0.002 | 0.372 | ||
| B | S.E. | Wald | DF | p-value | Exp(B) | Exp(B) 95%Confidence Interval | |||
|---|---|---|---|---|---|---|---|---|---|
| Lower | Upper | ||||||||
| Correlation between Fecal Status and Feeding Quantity in column 5 | |||||||||
| intake_5 | -0.408 | 0.029 | 194.22 | 1 | <.001* | 0.665 | 0.628 | 0.704 | |
| Constant | -1.112 | 0.011 | 9605.18 | 1 | <.001* | 0.329 | |||
| Correlation between Fecal Status and Feeding Quantity in column 14 | |||||||||
| intake_14 | 1.105 | 0.023 | 2399.61 | 1 | <.001* | 3.018 | 2.887 | 3.154 | |
| Constant | -1.507 | 0.013 | 12990.6 | 1 | <.001* | 0.222 | |||
| Correlation between Fecal Status and Feeding Quantity in column 15 | |||||||||
| intake_15 | -0.013 | 0.04 | 0.112 | 1 | 0.737 | 0.987 | 0.913 | 1.067 | |
| Constant | -1.179 | 0.011 | 11793.7 | 1 | <.001* | 0.308 | |||
| Correlation between Fecal Status and Feeding Quantity in column 17 | |||||||||
| intake_17 | 0.699 | 0.025 | 806.313 | 1 | <.001* | 2.011 | 1.917 | 2.111 | |
| Constant | -1.331 | 0.012 | 12120.72 | 1 | <.001* | 0.264 | |||
| Column 5 | Column 14 | Column 15 | Column 17 | |||||
|---|---|---|---|---|---|---|---|---|
| Predictor | OR (95% CI) |
P-value | OR (95% CI) |
P-value | OR (95% CI) |
P-value | OR (95% CI) |
P-value |
| TEMP | 3.29 (2.91-3.72) |
<0.001* | 16.20 (6.9-37.9) |
<.001* | 29.5 (22.7-38.3) |
<.001* | 1.43 (1.39-1.47) |
<.001* |
| RH | 1.18 (1.16-1.20) |
<0.001* | 16.79 (11.1-25.5) |
<.001* | 0.99 (0.99-1) |
0.023* | 0.93 (0.92-0.93) |
<.001* |
| CO2 | 0.98 (0.98-0.99) |
<0.001* | 0.99 (0.98-1) |
0.005* | 0.98 (0.98-0.99) |
<.001* | 1.01 (1-1.01) |
<.001* |
| PM2.5 | 7.64 (6.54-8.93) |
<0.001* | 14.69 (4.19-51.5) |
<.001* | 0.72 (0.55-0.94) |
0.015* | 0.31 (0.28-0.36) |
<.001* |
| PM10 | 0.13 (0.12-0.16) |
<0.001* | 0.06 (0.02-0.2) |
<.001* | 1.38 (1.06-1.8) |
0.017* | 3.01 (2.67-3.39) |
<.001* |
| TVOC | 0.37 (0.09-1.57) |
0.177 | 7E+11 (7E+8-7E+14) |
<.001* | 0.74 (0.16-3.32) |
0.690 | 197 (99.4-390.2) |
<.001* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
