Submitted:
24 July 2023
Posted:
26 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study design and participants
2.2. Blood sampling
2.3. CCAs and cell counting
2.4. Coagulation Factors
2.5. ROTEM Parameters
2.6. Statistical analysis
3. Results
3.1. Demographical Data
3.2. Type, TBSA and depth of burn injury
3.3. Complete Blood Count results (CBCs)
3.4. Conventional Coagulation Assays (CCAs)
3.5. Coagulation Factors
3.6. ROTEM Parameters
4. Discussion
4.1. Demographical Data, Type, TBSA and depth of burn injury
4.2. Complete Blood Count results (CBCs)
4.3. Conventional Coagulation Assays (CCAs)
4.4. Coagulation Factors
4.5. ROTEM Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lavrentieva, A.; Kontakiotis, T.; Bitzani, M.; Papaioannou-Gaki, G.; Parlapani, A.; Thomareis, O.; Tsotsolis, N.; Giala, M.-A. Early coagulation disorders after severe burn injury: impact on mortality. Intensiv. Care Med. 2008, 34, 700–706. [Google Scholar] [CrossRef]
- Nikolaidou, E.; Kakagia, D.; Kaldoudi, E.; Stouras, J.; Sovatzidis, A.; Tsaroucha, A. Coagulation Disorders And Mortality In Burn Injury: A Systematic Review. Ann Burns Fire Disasters. 2022, 35, 103–115. [Google Scholar] [PubMed]
- Lippi, G.; Ippolito, L.; Cervellin, G. Disseminated Intravascular Coagulation in Burn Injury. Semin. Thromb. Hemost. 2010, 36, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Garcı́a-Avello, A.; Lorente, J.; Cesar-Perez, J.; Garcı́a-Frade, L.; Alvarado, R.; Arévalo, J.; Navarro, J.; Esteban, A. Degree of Hypercoagulability and Hyperfibrinolysis is Related to Organ Failure and Prognosis after Burn Trauma. Thromb. Res. 1998, 89, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.-N.; Ba, T.; Li, F.; Chen, Q.; Chen, Z.-P.; Zhou, B.; Yan, Z.-Q.; Li, Q.; Cao, S.-J.; Wang, L.-F. Coagulation dysfunction of severe burn patients: A potential cause of death. Burns 2022, 49, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Kaita, Y.; Nishimura, H.; Tanaka, Y.; Suzuki, J.; Yoshikawa, K.; Yamaguchi, Y. Effect of acute coagulopathy before fluid administration in mortality for burned patients. Burns 2020, 47, 805–811. [Google Scholar] [CrossRef]
- Larsson, A.; Tynngård, N.; Kander, T.; Bonnevier, J.; Schött, U. Comparison of point-of-care hemostatic assays, routine coagulation tests, and outcome scores in critically ill patients. J. Crit. Care 2015, 30, 1032–1038. [Google Scholar] [CrossRef]
- Hess JR, Brohi K, Dutton RP, Hauser CJ, Holcomb JB, Kluger Y, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma. 2008;65(4):748–754. [CrossRef]
- Rizoli, S.B.; Scarpelini, S.; Callum, J.; Nascimento, B.; Mann, K.G.; Pinto, R.; Jansen, J.; Tien, H.C. Clotting Factor Deficiency in Early Trauma-Associated Coagulopathy. J. Trauma: Inj. Infect. Crit. Care 2011, 71, S427–S434. [Google Scholar] [CrossRef]
- Wiegele M, Kozek-Langenecker S, Schaden E: Point-of-care testing in burn patients. Semin Thromb Hemost, 43(4): 433-438, 2017. [CrossRef]
- Barmore W, Bajwa T, Burns B. Biochemistry, Clotting Factors. 2022 May 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–.
- Bolliger D, Seeberger MD, Tanaka KA: Principles and practice of thromboelastography in clinical coagulation management and transfusion practice. Transfus Med Rev, 26: 1-13, 2012. [CrossRef]
- Smith, A.R.; Karim, S.A.; Reif, R.R.; Beck, W.C.; Taylor, J.R.; Davis, B.L.; Bhavaraju, A.V.; Jensen, H.K.; Kimbrough, M.K.; Sexton, K.W. ROTEM as a Predictor of Mortality in Patients With Severe Trauma. J. Surg. Res. 2020, 251, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Schöchl, H.; Voelckel, W.; Grassetto, A.; Schlimp, C.J. Practical application of point-of-care coagulation testing to guide treatment decisions in trauma. J. Trauma: Inj. Infect. Crit. Care 2013, 74, 1587–1598. [Google Scholar] [CrossRef]
- Griffe O, Gartner R, Captier G, Brabet M, Baro B, Selloumi D, Otman S. Evaluation des facteurs pronostiques chez le patient brûlé [Evaluation of prognostic factors in the burned patient]. Ann Chir Plast Esthet. 2001 Jun;46(3):167-72. [CrossRef]
- Dries DJ, Endorf FW. Inhalation injury: epidemiology, pathology, treatment strategies. Scandinavian journal of trauma, resuscitation and emergency medicine. 2013;21:31. Epub 2013/04/20. pmid:23597126.
- Palmieri, T.L. Inhalation Injury: Research Progress and Needs. J. Burn. Care Res. 2007, 28, 549–554. [Google Scholar] [CrossRef]
- Walker, P.F.; Buehner, M.F.; Wood, L.A.; Boyer, N.L.; Driscoll, I.R.; Lundy, J.B.; Cancio, L.C.; Chung, K.K. Diagnosis and management of inhalation injury: an updated review. Crit. Care 2015, 19, 351. [Google Scholar] [CrossRef]
- Endorf FW, Gamelli RL. Inhalation injury, pulmonary perturbations, and fluid resuscitation. J Burn Care Res. 2007;28(1):Endorf FW, Gamelli RL. Inhalation injury, pulmonary perturbations, and fluid resuscitation. J Burn Care Res. 2007;28(1):80–3. Epub 2007/01/11. pmid:17211205–3. Epub 2007/01/11. pmid:17211205.
- Kim Y, Kym D, Hur J, Yoon J, Yim H, Cho YS, Chun W. Does inhalation injury predict mortality in burns patients or require redefinition? PLoS One. 2017 Sep 27;12(9):e0185195. [CrossRef]
- Colohan, S.M. Predicting Prognosis in Thermal Burns With Associated Inhalational Injury: A Systematic Review of Prognostic Factors in Adult Burn Victims. J. Burn. Care Res. 2010, 31, 529–539. [Google Scholar] [CrossRef]
- Thomson, P.D.; Moore, N.P.; Rice, T.L.; Prasad, J.K. Leukopenia in Acute Thermal Injury: Evidence Against Topical Silver Sulfadiazine as the Causative Agent. J. Burn. Care Rehabilitation 1989, 10, 418–420. [Google Scholar] [CrossRef]
- Laggner, M.; Lingitz, M.-T.; Copic, D.; Direder, M.; Klas, K.; Bormann, D.; Gugerell, A.; Moser, B.; Radtke, C.; Hacker, S.; et al. Severity of thermal burn injury is associated with systemic neutrophil activation. Sci. Rep. 2022, 12, 1654. [Google Scholar] [CrossRef]
- Hirth, D.; McClain, S.A.; Singer, A.J.; Clark, R.A.F. Endothelial necrosis at 1 hour postburn predicts progression of tissue injury. Wound Repair Regen. 2013, 21, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Livingston, D.H.; Anjaria, D.; Wu, J.; Hauser, C.J.; Chang, V.; A Deitch, E.; Rameshwar, P. Bone Marrow Failure Following Severe Injury in Humans. Ann. Surg. 2003, 238, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Osuka, A.; Ishihara, T.; Shimizu, K.; Shintani, A.; Ogura, H.; Ueyama, M. Natural kinetics of blood cells following major burn: Impact of early decreases in white blood cells and platelets as prognostic markers of mortality. Burns 2019, 45, 1901–1907. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Hsei, L.; Tran, N.; Romanowski, K.; Palmieri, T.; Greenhalgh, D.; Cho, K. Early clinical complete blood count changes in severe burn injuries. Burns 2018, 45, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, C.; Atac, B. Hematologic changes in massive burn injury. Crit. Care Med. 1992, 20, 1284–1288. [Google Scholar] [CrossRef]
- Posluszny, J.A.; Gamelli, R.L. Anemia of Thermal Injury: Combined Acute Blood Loss Anemia and Anemia of Critical Illness. J. Burn. Care Res. 2010, 31, 229–242. [Google Scholar] [CrossRef]
- Levin, G.; Egorihina, M. The role of fibrinogen in aggregation of platelets in burn injury. Burns 2010, 36, 806–810. [Google Scholar] [CrossRef]
- Lin, J.-C.; Wu, G.-H.; Zheng, J.-J.; Chen, Z.-H.; Chen, X.-D. Prognostic Values of Platelet Distribution Width and Platelet Distribution Width-to-Platelet Ratio in Severe Burns. Shock 2022, 57, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.P.; Ni, A.; Lin, F.-C.; Ortiz-Pujols, S.M.; Adams, S.D.; Monroe, D.M. 3rd; Whinna, H.C.; Cairns, B.A.; Key, N.S. Major burn injury is not associated with acute traumatic coagulopathy. J. Trauma Acute Care Surg. 2013, 74, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
- Mitra, B.; Wasiak, J.; Cameron, P.A.; O’reilly, G.; Dobson, H.; Cleland, H. Early coagulopathy of major burns. Injury 2013, 44, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Karki, D.; Muthukumar, V.; Jatin, B. Concept of Lethal Triad in Critical Care of Severe Burn Injury. Indian J. Crit. Care Med. 2019, 23, 206–209. [Google Scholar] [CrossRef]
- Sherren, P.; Hussey, J.; Martin, R.; Kundishora, T.; Parker, M.; Emerson, B. Acute burn induced coagulopathy. Burns 2013, 39, 1157–1161. [Google Scholar] [CrossRef]
- Sherren, P.; Hussey, J.; Martin, R.; Kundishora, T.; Parker, M.; Emerson, B. Lethal triad in severe burns. Burns 2014, 40, 1492–1496. [Google Scholar] [CrossRef]
- Kang G, Yonglin L, Yuting Y, Xiaobin D. Incidence and prognostic value of acute coagulopathy after extensive severe burns. J Burn Care Res. 2020;41(3):544–549. [CrossRef]
- Karki, D.; Muthukumar, V.; Jatin, B. Concept of Lethal Triad in Critical Care of Severe Burn Injury. Indian J. Crit. Care Med. 2019, 23, 206–209. [Google Scholar] [CrossRef]
- Davenport, R.B.; Manson, J.M.; Deʼath, H.; Platton, S.M.; Coates, A.B.; Allard, S.M.; Hart, D.; Pearse, R.M.; Pasi, K.J.P.; MacCallum, P.M.; et al. Functional definition and characterization of acute traumatic coagulopathy. Crit. Care Med. 2011, 39, 2652–2658. [Google Scholar] [CrossRef]
- Tejiram, S.; Brummel-Ziedins, K.E.; Orfeo, T.; Mete, M.; Desale, S.; Hamilton, B.N.; Moffatt, L.T.; Mann, K.G.; Tracy, R.P.; Shupp, J.W. In-depth analysis of clotting dynamics in burn patients. J. Surg. Res. 2016, 202, 341–351. [Google Scholar] [CrossRef]
- Zhang P, Huang K, SHI Z. Changes of fibrinogen and D-dimer in patients with severe burns and their relationship with prognosis. Chinese Journal of Primary Medicine and Pharmacy. 2018; (12): 988-990.
- Martini, W.Z.; Holcomb, J.B.; Yu, Y.-M.; E Wolf, S.; Cancio, L.C.; E Pusateri, A.; A Dubick, M. Hypercoagulation and Hypermetabolism of Fibrinogen in Severely Burned Adults. J. Burn. Care Res. 2019, 41, 23–29. [Google Scholar] [CrossRef]
- Lenting PJ, Christophe OD, Denis CV. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015 Mar 26;125(13):2019-28. [CrossRef]
- Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 7:678–689.
- Horvath B, Hegedus D, Szapary L, Marton Z, Alexy T, Koltai K et al. (2004) Measurement of von Willebrand factor as the marker of endothelial dys-function in vascular diseases. Exp Clin Cardiol. 9:31–34.
- Elfawy, D.M.; Elkalek, M.A.; Hamed, E.; Ibrahem, S.; Elzoghby, D.M.A.; Abdalla, W. Evaluation of von Willebrand factor as a marker for early diagnosis of Acute Respiratory Distress Syndrome in comparison to Interleukin-6. Ain-Shams J. Anesthesiol. 2021, 13, 28. [Google Scholar] [CrossRef]
- Keyloun, J.W.; Le, T.D.; Orfeo, T.; Brummel-Ziedins, K.E.; Kaye, M.D.; Bourne, D.E.; Carney, B.C.; Freeman, K.; Mann, K.G.; Pusateri, A.E.; et al. Assessing Factor V Antigen and Degradation Products in Burn and Trauma Patients. J. Surg. Res. 2022, 274, 169–177. [Google Scholar] [CrossRef]
- Zhao, R.; Lang, T.C.; Kim, A.; Wijewardena, A.; Vandervord, J.; McGrath, R.; Fulcher, G.; Xue, M.; Jackson, C. Early protein C activation is reflective of burn injury severity and plays a critical role in inflammatory burden and patient outcomes. Burns 2022, 48, 91–103. [Google Scholar] [CrossRef]
- Guilabert, P.; Martin, N.; Usúa, G.; Vendrell, M.; Colomina, M.J.; Barret, J.P. Coagulation Alterations in Major Burn Patients: A Narrative Review. J. Burn. Care Res. 2022, 44, 280–292. [Google Scholar] [CrossRef]
- Renné, T.; Schmaier, A.H.; Nickel, K.F.; Blombäck, M.; Maas, C. In vivo roles of factor XII. Blood 2012, 120, 4296–4303. [Google Scholar] [CrossRef]
- Schaden, E.; Hoerburger, D.; Hacker, S.; Kraincuk, P.; Baron, D.M.; Kozek-Langenecker, S. Fibrinogen function after severe burn injury. Burns 2012, 38, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Veigas, P.V.; Callum, J.; Rizoli, S.; Nascimento, B.; da Luz, L.T. A systematic review on the rotational thrombelastometry (ROTEM®) values for the diagnosis of coagulopathy, prediction and guidance of blood transfusion and prediction of mortality in trauma patients. Scand. J. Trauma, Resusc. Emerg. Med. 2016, 24, 114. [Google Scholar] [CrossRef] [PubMed]
- Schaden, E.; Kimberger, O.; Kraincuk, P.; Baron, D.; Metnitz, P.; Kozek-Langenecker, S. Perioperative treatment algorithm for bleeding burn patients reduces allogeneic blood product requirements. Br. J. Anaesth. 2012, 109, 376–381. [Google Scholar] [CrossRef] [PubMed]
| Total | Survivors | Non- survivors | |
|---|---|---|---|
| 27 | 17 | 10 | |
| Sex | Males: 15$Females: 12 | Males: 10$Females: 15 | Males: 5$Females: 5 |
| Mean Age (years) | 58,04 (SD: 16,9) | 51,88 (SD: 15,87) | 68,5 (12,99) |
| Burn type | Thermal: 24$Chemical: 2$Electric: 1 | Thermal: 14$Chemical: 2$Electric: 1 | Thermal: 10$Chemical: 0$Electric: 0 |
| Mean Total TBSA (%)$2nd degree TBSA (%)$3rd degree TBSA (%) | 33,78 (SD: 14,56)$15,67(SD: 10,87)$18,04 (SD: 15,34) | 32,65 (SD: 10,7)$17,53 (SD: 11,19)$15 (SD: 12,26) | 35,7 (SD: 19,28)$12,5 (SD: 9,5)$23,2 (SD: 18,38) |
| Inhalation injury | 7 | 2 (28,57%) | 5 (71,43%) |
| Survivors | Non-survivors | P-value | |
|---|---|---|---|
| HTDAY1 | 45,04 (6,15) | 46,14 (6,7) | 0,30 |
| HTDAY2 | 37,29 (5,16) | 43,16 (8,63) | 0,02* |
| HTDAY3 | 33,52 (4,79) | 35,14 (7,16) | 0,32 |
| HTDAY4 | 30,20 (7,33) | 32,76 (5,81) | 0,18 |
| HTDAY5 | 30,11 (5,25) | 28,61 (6,80) | 0,27 |
| HBDAY1 | 15,09 (2,19) | 15,27 (2,40) | 0,4 |
| HBDAY2 | 12,31 (1,74) | 14,15 (2,71) | 0,03* |
| HBDAY3 | 10,97 (1,57) | 11,62 (2,29) | 0,26 |
| HBDAY4 | 11,77 (5,86) | 10,77 (1,85) | 0,3 |
| HBDAY5 | 9,74 (1,68) | 9,25 (2,28) | 0,2 |
| WBC DAY1 | 18749,38 (8982,75) | 22467 (6042,72) | 0,21 |
| WBC DAY2 | 11747,13 (5562,52) | 16486,33 (8455,71) | 0,08 |
| WBC DAY3 | 9528,75 (4369,88) | 13827 (5630,89) | 0,04* |
| WBC DAY4 | 8651,2500 (3648,58) | 13407 (8381,74) | 0,12 |
| WBC DAY5 | 8505 (3441,78) | 10211 (6184,88) | 0,44 |
| PLT DAY1 | 236,88 (80,58) | 384,10 (308,37) | 0,6 |
| PLT DAY2 | 188,81 (67,56) | 293,30 (256,16) | 0,22 |
| PLT DAY3 | 161,25 (51,23) | 207,90 (186,54) | 0,44 |
| PLT DAY4 | 161,68 (52,36) | 162,00 (109,89) | 0,99 |
| PLT DAY5 | 184,44 (71,79) | 138,70 (88,87) | 0,16 |
| Survivors | Non-survivors | P-value | |
|---|---|---|---|
| INRDAY1 | 1,12 (0,16) | 1,11 (0,28) | 0,41 |
| INRDAY2 | 1,16 (0,16 | 1,22 (0,33) | 0,16 |
| INRDAY3 | 1,10 (0,14) | 1,32 (0,42) | 0,10 |
| INRDAY4 | 1,05 (0,11) | 1,27 (0,24) | 0,01* |
| INRDAY5 | 1,05 (0,09) | 1,23 (0,28) | 0,04* |
| PTDAY1 | 13,25 (1,83) | 13,27 (2,98) | 0,46 |
| PTDAY2 | 13,76 (1,95) | 14,51 (3,64) | 0,91 |
| PTDAY3 | 13,10 (1,64) | 15,69 (4,54) | 0,07 |
| PTDAY4 | 12,48 (1,25) | 15,17 (2,46) | 0,04* |
| PTDAY5 | 12,44 (1,17) | 14,70 (3,28) | 0,001* |
| PTTDAY1 | 27,69 (4,77) | 27,06 (4,38) | 0,75 |
| PTTDAY2 | 29,38 (5,65) | 33,03 (4,51) | 0,19 |
| PTTDAY3 | 33,48 (4,33) | 36,07 (7,44) | 0,42 |
| PTTDAY4 | 32,19 (4,24) | 33,49 (6,27) | 0,91 |
| PTTDAY5 | 32,06 (4,02) | 36,99 (9,66) | 0,28 |
| DDIMERSDAY1 | 1,15 (0,89) | 1,85 (2,16) | 0,35 |
| DDIMERSDAY2 | 1,11 (0,99) | 1,80 (2,48) | 0,42 |
| DDIMERSDAY3 | 0,93 (0,89) | 0,98 (0,63) | 0,88 |
| DDIMERSDAY4 | 0,46 (0,17) | 0,97 (0,68) | 0,82 |
| DDIMERSDAY5 | 1,14 (1,02) | 1,5 (1,17) | 0,42 |
| FIBRINOGENDAY1 | 3,06 (0,98) | 3,08 (0,88) | 0,96 |
| FIBRINOGENDAY2 | 2,88 (0,94) | 4,2 (1,03) | 0,03* |
| FIBRINOGENDAY3 | 3,74 (0,88) | 4,93 (0,94) | 0,07 |
| FIBRINOGENDAY4 | 4,74 (1,87) | 5,78 (1,68) | 0,33 |
| FIBRINOGENDAY5 | 4,65 (1,26) | 5,37 (1,69) | 0,26 |
| Survivors | Non-survivors | P-value | |
|---|---|---|---|
| VonWillebrandDAY1 | 258,45 (121,91) | 295,50 (109,24) | 0,46 |
| VonWillebrandDAY2 | 243,31 (63,1) | 333,94 (174,8) | 0,2 |
| VonWillebrandDAY3 | 266,54 (132,7) | 323,73 (102,01) | 0,35 |
| FactorVDAY1 | 60,12 (25,78) | 41,45 (15,89) | 0,55 |
| FactorVDAY3 | 80,14 (36,28) | 49,12 (20,23) | 0,42 |
| FactorVDAY5 | 99,22 (33,04) | 29,97 (17,10) | <0,001* |
| FactorVIIDAY1 | 68,91 (27,13) | 56,75 (33,71) | 0,34 |
| FactorVIIDAY3 | 72,89 (32,92) | 61,17 (25,16) | 0,4 |
| FactorVIIDAY5 | 107,24 (30) | 50,78 (30,69) | 0,05* |
| FactorIXDAY1 | 97,91 (42,67) | 80,36 (50,14) | 0,36 |
| FactorIXDAY3 | 106,2 (33,48) | 112,46 (55,61) | 0,79 |
| FactorIXDAY5 | 145,95 (40,85) | 119,4 (70,44) | 0,33 |
| FactorXDAY1 | 67,90 (21,80) | 55,48 (28,06) | 0,24 |
| FactorXDAY3 | 73,84 (42,18) | 54,35 (28,16) | 0,27 |
| FactorXDAY5 | 112,32 (87,27) | 45,88 (17,13) | 0,05* |
| FactorXIDAY1 | 78,62 (27,93) | 62,94 (31,17) | 0,22 |
| FactorXIDAY3 | 67,89 (21,13) | 53,06 (28,11) | 0,22 |
| FactorXIDAY5 | 91,02 (19,50) | 50,71 (34,33) | 0,01* |
| FactorXIIDAY1 | 53,77 (33,10) | 43,87 (21,54) | 0,42 |
| FactorXIIDAY3 | 36,37 (24,74) | 34,82 (16,24) | 0,88 |
| FactorXIIDAY5 | 49,19 (31,96) | 27,94 (9,27) | 0,05* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
