Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Selection of Short-Day Strawberry Genotypes through Multivariate Analysis

Version 1 : Received: 10 July 2023 / Approved: 11 July 2023 / Online: 11 July 2023 (08:40:08 CEST)

A peer-reviewed article of this Preprint also exists.

Rutz, T.; de Resende, J.T.V.; Mariguele, K.H.; Zeist, R.A.; da Silva, A.L.B.R. Selection of Short-Day Strawberry Genotypes through Multivariate Analysis. Plants 2023, 12, 2650. Rutz, T.; de Resende, J.T.V.; Mariguele, K.H.; Zeist, R.A.; da Silva, A.L.B.R. Selection of Short-Day Strawberry Genotypes through Multivariate Analysis. Plants 2023, 12, 2650.

Abstract

Strawberry is produced in tropical regions using imported cultivars adapted to temperate and subtropical climates. These cultivars, under tropical conditions, produce below their genetic potential. Through multivariate analyses, the objective was to evaluate and select short-day strawberry genotypes based on intraspecific crosses, product characteristics, and fruit quality. The genotypes were obtained from the cross between 'Camino Real' (female parent) and the first-generation genotypes RVCA16, RVCS44, RVFS06, RVFS07, and RVDA11 (male parent), obtained in previous selections. The experimental design consisted of augmented blocks with standard controls, consisting of first-generation genotypes and commercial cultivars. The fruits were harvested and evaluated for productivity and post-harvest characteristics: Total Fruit Mass (MTF); Total Number of Fruits (TFN); Average Fruit Mass (AFM); Commercial Fruit Mass (CFM); Fruit Commercial Number (CFN); Average Commercial Mass of Fruits (ACFM); Total Soluble Solids (TSS); Firmness (F); Brightness (L); Hue Angle (°Hue); Chroma (C). The selection index of Mulamba and Mock (1978) was used with an intensity of 3% to obtain superior genotypes and submitted to multivariate analysis for comparative purposes. Of the 1500 genotypes evaluated, it was possible to select 44 genotypes with characteristics superior to the 13 controls. The RVDA11CR59 genotype showed better values for the attributes of interest, but the RVCS44CR population, from the cross between 'Camino Real' × RVCS44 ('Camarosa' × 'Sweet Charlie'), obtained the highest number (16) of individuals among those selected. Significant traits had high heritability but were not necessarily reflected in high selection gain. Coefficients of genetic variation were high, indicating sufficient genetic variability to select genotypes for these traits. When multivariate analyses were used, it was possible to group the selected genotypes into the same cluster according to the similarity and balance in the responses to the evaluated variables, demonstrating that these analyses help other parameters choose superior genotypes. The multivariate analysis allowed the selection of more balanced genotypes for production and post-harvest traits for tropical climates.

Keywords

Fragaria × ananassa; genetic parameters; selection index; clusterin

Subject

Biology and Life Sciences, Horticulture

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.