Submitted:
02 March 2023
Posted:
09 March 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Field Conditions
2.2. Postharvest Quality
2.2.1. Sampling
2.2.2. Storage and Ripening
2.2.3. Fruit Postharvest Quality Analyses
- Internal defects or disorders
- Sensory analysis
- Flesh mineral content
- Fatty acid methyl esters (FAMEs)
2.3. Statistical Analysis
3. Results
3.1. Field Conditions
3.2. Postharvest Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avocado - World Statistics - Summer 2021 and Winter 2021-22. Fruti TROP online 2022, 283, 98–110.
- Selladurai, R.; Awachare, C.M. Nutrient Management for Avocado (Persea Americana Miller). J. Plant Nutr. 2020, 43, 138–147. [Google Scholar] [CrossRef]
- Salazar, S.; Lazcano, I. Identifiying Fruit Mineral Removal Differences in Four Avocado Cultivars. Better Crop. Int. 2001, 15, 28–31. [Google Scholar]
- Salazar, S.; Lazcano, I. La Fertilizacion En “Sitio Especifico” Incrementa Los Rendimientos Y El Tamaño De La Fruta Del Aguacate En Mexico. Actas V Congr. Mund. del Aguacate 2003, 373–379. [Google Scholar]
- Hofman, P.J.; Vuthapanich, S.; Whiley, A.W.; Klieber, A.; Simons, D.H. Tree Yield and Fruit Minerals Concentrations Influence “Hass” Avocado Fruit Quality. Sci. Hortic. (Amsterdam). 2002, 92, 113–123. [Google Scholar] [CrossRef]
- Hofman, P. Optimising the Posharvest Qualities of Hass Avocado through Improved Calcium Nutrition; Hofman, P., Fisheries, Q.D. of P.I.&, Eds.; 1st ed.; Australia, 2007; ISBN 0734114389.
- Daryl Joyce Improved Fruit Quality and Robustness in Avocado Supply Chains (Mineral Nutrition); (DAF), D. of A. and F.Q., Ed.; 7th ed.; North Sydney, 2021; ISBN 9780734146854.
- Hernández, I.; Fuentealba, C.; Olaeta, J.A.; Lurie, S.; Defilippi, B.G.; Campos-Vargas, R.; Pedreschi, R. Factors Associated with Postharvest Ripening Heterogeneity of “Hass” Avocados (Persea Americana Mill). Fruits 2016, 71, 259–268. [Google Scholar] [CrossRef]
- Rodríguez-Fonseca, P.E.; Martínez-álvarez, O.L.; Ocampo-Arango, C.M.; Ardila-Castañeda, M.P.; Escobar-Calderón, J.V. Effect of Harvest Index and Storage Duration on Sensory Quality of Hass Avocado Grown in Colombia. DYNA 2021, 88, 131–139. [Google Scholar] [CrossRef]
- Hausch, B.J.; Arpaia, M.L.; Campisi-Pinto, S.; Obenland, D.M. Sensory Characterization of Two California-Grown Avocado Varieties (Persea Americana Mill.) over the Harvest Season by Descriptive Analysis and Consumer Tests. J. Food Sci. Wiley 2021, 86, 4134–4147. [Google Scholar] [CrossRef] [PubMed]
- Donetti, M.; Terry, L.A. Biochemical Markers Defining Growing Area and Ripening Stage of Imported Avocado Fruit Cv. Hass. J. Food Compos. Anal. 2014, 34, 90–98. [Google Scholar] [CrossRef]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A Recommendation on Standardized Surface Resistance for Hourly Calculation of Reference ETo by the FAO56 Penman-Monteith Method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Kenworthy, A. Leaf Analysis as an Aid in Fertilizing Orchards. In Soil testing and plant analysis.; Walsh LM, B.J., America, S.S.S. of, Eds.; Madison, EE. UU, 1973; pp. 381–392.
- AOAC (2005). Official Method of Analysis. J. Chem. Inf. Model. 2005, 18th Editi.
- White, A.; Woolf, A.; Hofman, P.; Mary Lu Arpaia. The International Avocado Quality; Postharves; White, A., Woolf, A., Research, P.& F., Hofman, P., Fisheries, Q.P.I., Arpaia, M.L., Riverside, U. of, Eds.; New Zealand, 2009.
- ISO (4121). Sensory Analysis-Guidelines for the Use of Quantitative Response Scales. Sensory Analysis. Technical.; Technical Committee, I. 34/SC 12, Ed.; 2nd ed.; Geneva, Switzerland., 2003; Vol. 34.
- Obenland, D.; Collin, S.; Sievert, J.; Negm, F.; Arpaia, M.L. Influence of Maturity and Ripening on Aroma Volatiles and Flavor in ‘Hass’ Avocado. Postharvest Biol. Technol. 2012, 71, 41–50. [Google Scholar] [CrossRef]
- Escobar, J. V.; Cortés, M.; Correa, G.; Rondón, T.; Rodríguez, P. ‘Hass’ Avocado Internal Disorders under Simulated Export Conditions and Its Relationship with Flesh Mineral Content and Preharvest Variables. Horticulturae 2021, 7. [Google Scholar] [CrossRef]
- Mckean, S. Thinking with the Saint: The Miracle of Saint Januarius of Naples and Science in Early Modern Europe. Early Sci. Med. 1993, 19, 133–173. [Google Scholar] [CrossRef]
- FAO Codex Alimentarius CXS-197-1995. Normas Internacionales de Los Alimentos. Normas Int. los Aliment. 1995, 3–4. [Google Scholar]
- Gamble, Joanna Harker, F. Roger Jaeger, Sara R. White, Anne Bava, Christina Beresford, Michelle Stubbings, Barbara Wohlers, Mark Hofman, Peter J. Marques, Roberto Woolf, A. The Impact of Dry Matter, Ripeness and Internal Defects on Consumer Perceptions of Avocado Quality and Intentions to Purchase. Postharvest Biol. Technol. 2010, 57, 35–43. [CrossRef]
- Matsui, T.; Kamata, T.; Koseki, S.; Koyama, K. Development of Automatic Detection Model for Stem-End Rots of ‘Hass’ Avocado Fruit Using X-Ray Imaging and Image Processing. Postharvest Biol. Technol. 2022, 192, 111996. [Google Scholar] [CrossRef]
- Eslava, J. Some Particular Climatic Features of the Colombian Pacific Region. Atmósfera 1994, 17, 45–63. [Google Scholar]
- MEJIA, F.; MESA, O.; POVEDA, G.; VELEZ, J.; HOYOS, C.; MANTILLA, R.; BARCO, J.; CUARTAS, A.; MONTOYA., Mar.; BOTERO, B. Distribución Espacial y Ciclos Anual y Semianual de La Precipitación En Colombia. DYNA 1999, 127.
- León, G.E.; Zea, J.A.; Eslava, J.A. Circulación General Del Tropico y La Zona de Confluencia Intertropical En Colombia. Meteorol. Colomb. 2000, 1, 31–38. [Google Scholar]
- Poveda, G.; Vélez, J.I.; Mesa, O.J.; Cuartas, A.; Barco, J.; Mantilla, R.I.; Mejía, J.F.; Hoyos, C.D.; Ramírez, J.M.; Ceballos, L.I.; et al. Linking Long-Term Water Balances and Statistical Scaling to Estimate River Flows along the Drainage Network of Colombia. J. Hydrol. Eng. 2007, 12, 4–13. [Google Scholar] [CrossRef]
- Poveda, G.; Álvarez, D.M.; Rueda, Ó.A. Hydro-Climatic Variability over the Andes of Colombia Associated with ENSO: A Review of Climatic Processes and Their Impact on One of the Earth’s Most Important Biodiversity Hotspots. Clim. Dyn. 2011, 36, 2233–2249. [Google Scholar] [CrossRef]
- Whiley, A.W.; Chapman, K.R.; Saranah, J.B. Water Loss by Floral Structures of Avocado (Persea Americana Cv. Fuerte) during Flowering. Aust. J. Agric. Res. 1988, 39, 457–467. [Google Scholar] [CrossRef]
- Blanke, M.M.; Lovatt, C.J. Anatomy and Transpiration of the Avocado Inflorescence. Ann. Bot. 1993, 71, 543–547. [Google Scholar] [CrossRef]
- Lahav, E.; Whiley, A.W.; Turner, D.W. Irrigation and Mineral Nutrition. In Avocado: botany, production and uses.; B. Schaffer, B. N. Wolstenholme, A.W.W., Ed.; London, 2013; pp. 301–341.
- Schaffer, B.; GIL, P.; MICKELBART, M.V.; WHILEY, A.W. Ecophysiology. In Avocado: botany, production and uses.; B. Schaffer, B. N. Wolstenholme, A.W.W., Ed.; London, 2013; Vol. 1, pp. 168–199 ISBN 9788578110796.
- Silber, A.; Naor, A.; Cohen, H.; Bar-Noy, Y.; Yechieli, N.; Levi, M.; Noy, M.; Peres, M.; Duari, D.; Narkis, K.; et al. Avocado Fertilization: Matching the Periodic Demand for Nutrients. Sci. Hortic. (Amsterdam). 2018, 241, 231–240. [Google Scholar] [CrossRef]
- Cantuarias-Avilés, T.; da Silva, S.R.; Angolini, S.F.; do Amaral Brogio, B.; Baptista, E.G.; Micheletti, L.B. Water Status and Productivity of “Hass” Avocado Trees in Response to Supplemental Irrigation during Winter. Pesqui. Agropecu. Bras. 2019, 54. [Google Scholar] [CrossRef]
- García-martínez, R. Yield , Quality and Post-Harvest Behavior of ‘ Hass ’ Avocado Fruits of Orchards with Different Fertilization. 2021, 12, 205–218.
- Maldonado-Torres, R.; Álvarez-Sánchez, M.E.; Almaguer-Vargas, G.; Barrientos-Priego, A.F.; García-Mateos, R. Estandadres Nutricionales Para Aguacatero ‘HASS. ’ Rev. Chapingo Ser. Hortic. 2007, 13, 103–108. [Google Scholar] [CrossRef]
- Torres, R.M.; Gustavo, A.V. Campos Luis - 2020. 2020, 263–274.
- Medina-Carrillo, R.E.; Salazar-García, S.; Bonilla-Cárdenas, J.A.; Herrera-González, J.A.; Ibarra-Estrada, M.E.; Álvarez-Bravo, A. Secondary Metabolites and Lignin in ‘Hass’ Avocado Fruit Skin during Fruit Development in Three Producing Regions. HortScience 2017, 52, 852–858. [Google Scholar] [CrossRef]
- Rooyen, V.Z.; Bower, J.P. The Role of Fruit Mineral Composition on Fruit Softness and Mesocarp Discolouration in “Pinkerton” Avocado (Persea Americana Mill.). J. Hortic. Sci. Biotechnol. 2005, 80, 793–799. [Google Scholar] [CrossRef]
- Fuentealba, C.; Hernández, I.; Olaeta, J.A.; Defilippi, B.; Meneses, C.; Campos, R.; Lurie, S.; Carpentier, S.; Pedreschi, R. New Insights into the Heterogeneous Ripening in Hass Avocado via LC–MS/MS Proteomics. Postharvest Biol. Technol. 2017, 132, 51–61. [Google Scholar] [CrossRef]
- Ferreyra, R.; Sellés, G.; Saavedra, J.; Ortiz, J.; Zúñiga, C.; Troncoso, C.; Rivera, S.A.; González-Agüero, M.; Defilippi, B.G. Identification of Pre-Harvest Factors That Affect Fatty Acid Profiles of Avocado Fruit (Persea Americana Mill) Cv. ‘Hass’ at Harvest. South African J. Bot. 2016, 104, 15–20. [Google Scholar] [CrossRef]
- Ferguson, I.; Volz, R.; Woolf, A. Preharvest Factors Affecting Physiological Disorders of Fruit. Postharvest Biol. Technol. 1999, 15, 255–262. [Google Scholar] [CrossRef]
- Drori, N.; Kramer-Haimovich, H.; Rollins, J.; Dinoor, A.; Okon, Y.; Pines, O.; Prusky, D. External PH and Nitrogen Source Affect Secretion of Pectate Lyase by Colletotrichum Gloeosporioides. Appl. Environ. Microbiol. 2003, 69, 3258–3262. [Google Scholar] [CrossRef] [PubMed]
- Rooyen, Z. Van; Bower, J.P. The Role of Fruit Mineral Composition , Phenolic Concentration and Polyphenol Oxidase Activity on Mesocarp Discolouration in ‘ Pinkerton .’ South African Avocado Grow. Assoc. Yearb. 2003, 72–75.
- Arpaia, M.L.; Collin, S.; Sievert, J.; Obenland, D. Influence of Cold Storage Prior to and after Ripening on Quality Factors and Sensory Attributes of ‘Hass’ Avocados. Postharvest Biol. Technol. 2015, 110, 149–157. [Google Scholar] [CrossRef]
- Rodriguez, P.; Henao, J.C.; Correa, G.; Aristizabal, A. Identification of Harvest Maturity Indicators for ‘Hass’ Avocado Adaptable to Field Conditions. Horttechnology 2018, 28, 815–821. [Google Scholar] [CrossRef]
- Metlenkin, D.A.; Platov, Y.T.; Platova, R.A.; Zhirkova, E. V.; Teneva, O.T. Non-Destructive Identification of Defects and Classification of Hass Avocado Fruits with the Use of a Hyperspectral Image. Agron. Res. 2022, 20, 326–340. [Google Scholar] [CrossRef]
- L. C. Requejo-Tapia, A.B. Woolf, G. Roughan, R. Schroeder, H. Young, and A.W. Seasonal Changes of Lipid Content in the Leaves of Some Ferns. Physiol. Plant. 2000, 113, 59–63. [Google Scholar] [CrossRef]
- Kaiser, C.; Wolstenholme, B.N. Aspects of Delayed Harvest of “Haas” Avocado (Persea Americana Mill.) Fruit in a Cool Subtropical Climate. I.Fruit Lipid and Fatty Acid Accumulation. J. Hortic. Sci. 1994, 69, 437–445. [Google Scholar] [CrossRef]
- Pedreschi, R.; Hollak, S.; Harkema, H.; Otma, E.; Robledo, P.; Westra, E.; Somhorst, D.; Ferreyra, R.; Defilippi, B.G. Impact of Postharvest Ripening Strategies on ‘Hass’ Avocado Fatty Acid Profiles. South African J. Bot. 2016, 103, 32–35. [Google Scholar] [CrossRef]
- Hausch, B.J.; Arpaia, M.L.; Kawagoe, Z.; Walse, S.; Obenland, D. Chemical Characterization of Two California-Grown Avocado Varieties (Persea Americana Mill.) over the Harvest Season with an Emphasis on Sensory-Directed Flavor Analysis. J. Agric. Food Chem. 2020, 68, 15301–15310. [Google Scholar] [CrossRef]
- Pisani, C.; Ritenour, M.A.; Stover, E.; Plotto, A.; Alessandro, R.; Kuhn, D.N.; Schnell, R.J. Postharvest and Sensory Evaluation of Selected ‘Hass’ × ‘Bacon’ and ‘Bacon’ × ‘Hass’ Avocado Hybrids Grown in East-Central Florida. HortScience 2017, 52, 880–886. [Google Scholar] [CrossRef]
- Yang, S.; Hallett, I.; Rebstock, R.; Oh, H.E.; Kam, R.; Woolf, A.B.; Wong, M. Cellular Changes in “Hass” Avocado Mesocarp During Cold-Pressed Oil Extraction. JAOCS, J. Am. Oil Chem. Soc. 2018, 95, 229–238. [Google Scholar] [CrossRef]
- Cervantes-Paz, B.; Yahia, E.M. Avocado Oil: Production and Market Demand, Bioactive Components, Implications in Health, and Tendencies and Potential Uses. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4120–4158. [Google Scholar] [CrossRef] [PubMed]








| Mineral | R Min - Max |
N Min - Max |
EB Min - Max |
|---|---|---|---|
| Depth (cm) | 0. 45 | 0.45 | 0.45 |
| pH | 5.42 ± 0.10 | 5.50 ± 0.06 | 5.12 ± 0.05 |
| EC (ds/m) | 0.33 ± 0.10 | 0.35 ± 0.06 | 1.05 ± 0.11 |
| OM (%) | 12.36 ± 0.47 | 14.85 ± 0.88 | 12.53 ± 0.69 |
| P* | 4.69 ± 0.72 | 5.45 ± 0.70 | 37.79 ± 5.08 |
| S* | 67.03 ± 7.4 | 75.13 ± 7.9 | 30.52 ± 1.83 |
| Mg* | 0.97 ± 0.15 | 0.99 ± 0.04 | 1.64 ± 0.27 |
| Ca** | 2.87± 0.40 | 3.90 ± 0.5 | 4.04 ± 0.61 |
| K** | 0.62 ± 0.09 | 0.44 ± 0.12 | 0.62 ± 0.05 |
| Na** | 0.09 ± 0.003 | 0.08 ± 0.008 | 0.10 ± 0.001 |
| CEC** | 4.64 ± 1.00 | 5.29 ± 0.6 | 6.98 ± 0.82 |
| B* | 0.22 ± 0.04 | 0.26 ± 0.03 | 0.33 ± 0.06 |
| Mn* | 2.39 ± 0.30 | 2.19 ± 0.20 | 13.05 ± 0.88 |
| Cu* | 2.49 ± 0.90 | 0.69 ± 0.20 | 5.65 ± 0.41 |
| Fe* | 101.95 ± 2.72 | 80.20 ± 5.60 | 309.32 ± 22.23 |
| Zn* | 1.54 ± 0.20 | 3.76 ± 1.20 | 8.56 ± 1.35 |
| Soil texture | SL | SL | SL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
