Submitted:
19 April 2024
Posted:
22 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental Orchard and Experimental Design
2.2. Field Measurements and Fruit Harvest
2.3. Maturation Index and Fruit Yield
2.4. Sample Preparation and Extraction for Metabolomic Analysis
2.5. Phenolic Profiling Using Untargeted Metabolomics
2.6. Statistical analysis
3. Results
3.1. Fruit Load and Deficit Irrigation Effect on Oil Accumulation, Water Potential, and Olive Growth Dynamics
3.2. Fruit Load and Deficit Irrigation Effect on the Phenolic Profile of Olive Extracts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Adamo, I.; Falcone, P.M; Gastaldi, M.; Morone, P. A social analysis of the olive oil sector: The role of family business. Resources 2019, 8. [Google Scholar] [CrossRef]
- Guarino, F.; Falcone, G.; Stillitano, T.; De Luca, A. I.; Gulisano, G.; Mistretta, M.; Strano, A. Life cycle assessment of olive oil: A case study in southern Italy. Journal of Environmental Management, 2019, 238, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, L.; Farolfi, C.; Capri, E. Sustainability certification, a new path of value creation in the olive oil sector: The Italian case study. Foods, 2021, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Stillitano, T.; Falcone, G.; Nicolò, B. F.; di Girolamo, C.; Gulisano, G.; de Luca, A. I. Technical efficiency assessment of intensive and traditional olive farms in Southern Italy. Agris On-Line Papers in Economics and Informatics, 2019, 11, 81–93. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P. M.; Gastaldi, M. Price analysis of extra virgin olive oil. British Food Journal, 2019, 121, 1899–1911. [Google Scholar] [CrossRef]
- Lombardo, L.; Farolfi, C.; Tombesi, S.; Novelli, E.; Capri, E. Development of a sustainability technical guide for the Italian olive oil supply chain. Science of the Total Environment 2022, 820. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, F.; Rojo, J.; Picornell, A.; Oteros, J.; Pérez-Badia, R.; Fornaciari, M. Impact of climate change on olive crop production in Italy. Atmosphere 2020, 11. [Google Scholar] [CrossRef]
- International Olive Council. International olive oil production costs study: results, conclusions and recommendations. 2015. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/INTERNATIONAL-OLIVE-OIL-PRODUCTION-COSTS-STUDY-.pdf (accessed on 25 January 2023).
- Criscuolo, N.; Guarino, F.; Angelini, C.; Castiglione, S.; Caruso, T.; Cicatelli, A. High biodiversity arises from the analyses of morphometric, biochemical and genetic data in ancient olive trees of South of Italy. Plants 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Roselli, L.; Clodoveo, M. L.; Corbo, F.; de Gennaro, B. Are health claims a useful tool to segment the category of extra-virgin olive oil? Threats and opportunities for the Italian olive oil supply chain. Trends in Food Science and Technology, 2017, 68, 176–181. [Google Scholar] [CrossRef]
- Guerrero-Casado, J.; Carpio, A. J.; Tortosa, F. S.; Villanueva, A. J. Environmental challenges of intensive woody crops: The case of super high-density olive groves. Science of the Total Environment, 2021, 798, 149212. [Google Scholar] [CrossRef]
- Trentacoste, E. R.; Puertas, C. M.; Sadras, V. O. Effect of irrigation and tree density on vegetative growth, oil yield and water use efficiency in young olive orchard under arid conditions in Mendoza, Argentina. Irrigation Science, 2015, 33, 429–440. [Google Scholar] [CrossRef]
- Navas-Lopez, J. F.; León, L.; Trentacoste, E. R.; de la Rosa, R. Multi-environment evaluation of oil accumulation pattern parameters in olive. Plant Physiology and Biochemistry, 2019, 139, 485–494. [Google Scholar] [CrossRef]
- Gucci, R.; Lodolini, E.; Rapoport, H. F. Productivity of olive trees with different water status and crop load. Journal of Horticultural Science and Biotechnology, 2007, 82, 648–656. [Google Scholar] [CrossRef]
- Trentacoste, E. R.; Puertas, C. M.; Sadras, V. O. Effect of fruit load on oil yield components and dynamics of fruit growth and oil accumulation in olive (Olea europaea L.). European Journal of Agronomy, 2010, 32, 249–254. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Gennai, C.; Esposto, S.; Urbani, S.; Servili, M. Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development. Agricultural Water Management, 2019, 212, 88–98. [Google Scholar] [CrossRef]
- Siakou, M.; Bruggeman, A.; Eliades, M.; Zoumides, C.; Djuma, H.; Kyriacou, M. C.; Emmanouilidou, M. G.; Spyros, A.; Manolopoulou, E.; Moriana, A. Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates. Agricultural Water Management, 2021, 258, 107200. [Google Scholar] [CrossRef]
- Fernández, F. J.; Ladux, J. L.; Hammami, S. B. M.; Rapoport, H. F.; Searles, P. S. Fruit, mesocarp, and endocarp responses to crop load and to different estimates of source: sink ratio in olive (cv. Arauco) at final harvest. Scientia Horticulturae, 2018, 234, 49–57. [Google Scholar] [CrossRef]
- Ivancic, T.; Jakopic, J.; Veberic, R.; Vesel, V.; Hudina, M. Effect of Ripening on the Phenolic and Sugar Contents in the Meso- and Epicarp of Olive Fruits (Olea europaea L.) Cultivar ‘Leccino.’. Agriculture (Switzerland) 2022, 12. [Google Scholar] [CrossRef]
- Rao, G.; Liu, X.; Zha, W.; Wu, W.; Zhang, J. Metabolomics reveals variation and correlation among different tissues of olive (Olea europaea L.). Biology Open, 2017, 6, 1317–1323. [Google Scholar] [CrossRef]
- Dias, M. C.; Pinto, D. C. G. A.; Figueiredo, C.; Santos, C.; Silva, A. M. S. Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery. Phytochemistry 2021, 185. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal, 2011, 9, 2033 [25 pp.]. [CrossRef]
- Jerman Klen, T.; Mozetič Vodopivec, B. The fate of olive fruit phenols during commercial olive oil processing: Traditional press versus continuous two- and three-phase centrifuge. LWT - Food Science and Technology, 2012, 49, 267–274. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A. M.; León, L.; De La Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. From olive fruits to olive Oil: Phenolic compound transfer in six different olive cultivars grown under the same agronomical conditions. International Journal of Molecular Sciences 2016, 17. [Google Scholar] [CrossRef] [PubMed]
- Ortega-García, F.; Peragón, J. Phenylalanine ammonia-lyase, polyphenol oxidase, and phenol concentration in fruits of olea europaea L. cv. picual, verdial, arbequina, and frantoio during ripening. Journal of Agricultural and Food Chemistry, 2009, 57, 10331–10340. [Google Scholar] [CrossRef]
- Servili, M.; Sordini, B.; Esposto, S.; Taticchi, A.; Urbani, S.; Sebastiani, L. Metabolomics of Olive Fruit: A Focus on the Secondary Metabolites. E. Rugini et al. (eds.), The Olive Tree Genome. Compendium of Plant Genomes 2016, 123–139. [Google Scholar] [CrossRef]
- Pierantozzi, P.; Torres, M.; Tivani, M.; Contreras, C.; Gentili, L.; Mastio, V.; Parera, C.; Maestri, D. Yield and chemical components from the constitutive parts of olive (cv. Genovesa) fruits are barely affected by spring deficit irrigation. Journal of Food Composition and Analysis 2021, 102. [Google Scholar] [CrossRef]
- Angilè, F.; Vivaldi, G. A.; Girelli, C. R.; Del Coco, L.; Caponio, G.; Lopriore, G.; Fanizzi, F. P.; Camposeo, S. Treated Unconventional Waters Combined with Different Irrigation Strategies Affect 1 H NMR Metabolic Profile of a Monovarietal Extra Virgin Olive Oil. Sustainability 2022, 14. [Google Scholar] [CrossRef]
- Faghim, J.; Mohamed, M. Ben; Bagues, M.; Nagaz, K.; Triki, T.; Guasmi, F. Irrigation effects on phenolic profile and extra virgin olive oil quality of “‘Chemlali’” variety grown in South Tunisia. South African Journal of Botany, 2021, 141, 322–329. [Google Scholar] [CrossRef]
- García-Garví, J. M.; Sánchez-Bravo, P.; Hernández, F.; Sendra, E.; Corell, M.; Moriana, A.; Burgos-Hernández, A.; Carbonell-Barrachina, Á. A. Effect of Regulated Deficit Irrigation on the Quality of ‘Arbequina’ Extra Virgin Olive Oil Produced on a Super-High-Intensive Orchard. Agronomy 2022, 12. [Google Scholar] [CrossRef]
- Sastre, B.; Arbonés, A.; Pérez-Jiménez, M. Á.; Pascual, M.; Benito, A.; de Lorenzo, C.; Villar, J. M.; Bonet, L. J.; Paz, S.; Santos, Á.; Hermoso, J. F.; Romero, A.; Farolfi, C.; Rufat, J. Influence of Regulated Deficit Irrigation on Arbequina’s Crop Yield and EVOOs Quality and Sensory Profile. Agronomy, 2022, 13, 31. [Google Scholar] [CrossRef]
- Fernandes-Silva, A., Oliveira, M., A. Paço, T., & Ferreira, I. (2019). Deficit Irrigation in Mediterranean Fruit Trees and Grapevines: Water Stress Indicators and Crop Responses. In Irrigation in Agroecosystems. IntechOpen, London, UK. [CrossRef]
- Martinelli, F.; Basile, B.; Morelli, G.; d’Andria, R.; Tonutti, P. Effects of irrigation on fruit ripening behavior and metabolic changes in olive. Scientia Horticulturae, 2012, 144, 201–207. [Google Scholar] [CrossRef]
- Martinelli, F.; Remorini, D.; Saia, S.; Massai, R.; Tonutti, P. Metabolic profiling of ripe olive fruit in response to moderate water stress. Scientia Horticulturae, 2013, 159, 52–58. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S; Raes, D.; Smith, M. Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and drainage paper 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998.
- McCutchan, H.; Shackel, K. A. Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). Journal of the American Society for Horticultural Science, 1992, 117, 607–611. [Google Scholar] [CrossRef]
- International Olive Council. Guide for the determination of the characteristics of oil-olives. 2011. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-OH-Doc.-1-2011-Eng.pdf (accessed on 15 March 2023).
- García-Pérez, P.; Rocchetti, G.; Giuberti, G.; Lucchini, F.; Lucini, L. Phenolic acids, lignans, and low-molecular-weight phenolics exhibit the highest in vitro cellular bioavailability in different digested and faecal-fermented phenolics-rich plant extracts. Food Chemistry 2023, 412. [Google Scholar] [CrossRef] [PubMed]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; Scalbert, A. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database: The Journal of Biological Databases and Curation 2010. [Google Scholar] [CrossRef] [PubMed]
- Salek, R. M.; Steinbeck, C.; Viant, M. R.; Goodacre, R.; Dunn, W. B. The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience 2013, 2. [Google Scholar] [CrossRef] [PubMed]
- Falchi, R.; Bonghi, C.; Drincovich, M. F.; Famiani, F.; Lara, M. V.; Walker, R. P.; Vizzotto, G. Sugar Metabolism in Stone Fruit: Source-Sink Relationships and Environmental and Agronomical Effects. Front. Plant Sci., 2020, 11, 573982. [Google Scholar] [CrossRef] [PubMed]
- Lavee, S.; Wodner, M. The effect of yield, harvest time and fruit size on the oil content in fruits of irrigated olive trees (Olea europaea), cvs. Barnea and Manzanillo. Scientia Horticulturae, 2004, 99, 267–277. [Google Scholar] [CrossRef]
- Gonçalves, A.; Silva, E.; Brito, C.; Martins, S.; Pinto, L.; Dinis, L. T.; Luzio, A.; Martins-Gomes, C.; Fernandes-Silva, A.; Ribeiro, C.; Rodrigues, M. Â.; Moutinho-Pereira, J.; Nunes, F. M.; Correia, C. M. Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies. Journal of the Science of Food and Agriculture, 2020, 100, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Petridis, A.; Therios, I.; Samouris, G.; Koundouras, S.; Giannakoula, A. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant physiology and biochemistry, 2012, 60, 1–11. [Google Scholar] [CrossRef]
- Hueso, A.; Trentacoste, E.R.; Junquera, P.; Gómez-Miguel, V.; Gómez-del-Campo, M. Differences in stem water potential during oil synthesis determine fruit characteristics and production but not vegetative growth or return bloom in an olive hedgerow orchard (cv. Arbequina). Agricultural Water Management, 2019, 223, 105589. [Google Scholar] [CrossRef]
- Marra, F. P.; Marino, G.; Marchese, A.; Caruso, T. Effects of different irrigation regimes on a super-high-density olive grove cv. “Arbequina”: vegetative growth, productivity and polyphenol content of the oil. Irrigation Science, 2016, 34, 313–325. [Google Scholar] [CrossRef]
- Dag, A.M; Kerem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. Influence of time of harvest and maturity index on olive oil yield and quality. Scientia Horticulturae, 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Kurtural, S. K. Source–Sink manipulations have major implications for grapevine berry and wine flavonoids and aromas that go beyond the changes in berry sugar accumulation. Food Research International, 2023, 169, 112826. [Google Scholar] [CrossRef] [PubMed]
- Nasini, L.; Proietti, P. Olive harvesting, in: The Extra-Virgin Olive Oil Handbook. John Wiley & Sons, Ltd, Chichester, UK, 2014, pp. 87–105. [CrossRef]
- Karagiannis, E.; Michailidis, M.; Skodra, C.; Stamatakis, G.; Dasenaki, M.; Ganopoulos, I.; Samiotaki, M.; Thomaidis, N. S.; Molassiotis, A.; Tanou, G. Proteo-metabolomic journey across olive drupe development and maturation. Food Chemistry, 2021, 363, 130339. [Google Scholar] [CrossRef] [PubMed]
- Mechri, B.; Tekaya, M.; Hammami, M.; Chehab, H. Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea). Biochemical Systematics and Ecology 2020, 92. [Google Scholar] [CrossRef]
- Ivancic, T.; Jakopic, J.; Veberic, R.; Vesel, V.; Hudina, M. Effect of Ripening on the Phenolic and Sugar Contents in the Meso- and Epicarp of Olive Fruits (Olea europaea L.) Cultivar ‘Leccino.’. Agriculture (Switzerland) 2022, 12. [Google Scholar] [CrossRef]
- Buendía, B.; Allende, A.; Nicolás, E.; Alarcón, J. J.; Gil, M. I. Effect of regulated deficit irrigation and crop load on the antioxidant compounds of peaches. Journal of Agricultural and Food Chemistry, 2008, 56, 3601–3608. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, C.; Ravaglia, D.; Costa, G. Effects of Fruit Load and Reflective Mulch on Phenolic Compounds Accumulation in Nectarine Fruit. In Europ.J.Hort.Sci., 2010, 75, 2. [Google Scholar]
- Fotiadou, R.; Lefas, D.; Vougiouklaki, D.; Tsakni, A.; Houhoula, D.; Stamatis, H. Enzymatic Modification of Pomace Olive Oil with Natural Antioxidants: Effect on Oxidative Stability. Biomolecules, 2023, 13, 1034. [Google Scholar] [CrossRef]
- Macoy, D. M.; Kim, W. Y.; Lee, S. Y.; Kim, M. G. Biosynthesis, physiology, and functions of hydroxycinnamic acid amides in plants. Plant Biotechnology Reports, 2015, 9, 269–278. [Google Scholar] [CrossRef]
- Hoffmann, L.; Besseau, S.; Geoffroy, P.; Ritztenthaler, C.; Meyer, D.; Lapierre, C.; Pollet, B.; Legrand, M. Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell, 2004, 16, 1446–1465. [Google Scholar] [CrossRef]
- Alagna, F.; Mariotti, R.; Panara, F.; Caporali, S.; Urbani, S.; Veneziani, G.; Esposto, S.; Taticchi, A.; Rosati, A.; Rao, R.; Perrotta, G.; Servili, M.; Baldoni, L. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development. BMC Plant Biology 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Felizardo, C.; Fernandes-Silva, A. A.; Nunes, F. M.; Barros, A. Polyphenolic compounds, antioxidant activity and l-phenylalanine ammonia-lyase activity during ripening of olive cv. “Cobrançosa” under different irrigation regimes. Food Research International, 2013, 51, 412–421. [Google Scholar] [CrossRef]
- Cirilli, M.; Caruso, G.; Gennai, C.; Urbani, S.; Frioni, E.; Ruzzi, M.; Servili, M.; Gucci, R.; Poerio, E.; Muleo, R. The role of polyphenoloxidase, peroxidase, and β-glucosidase in phenolics accumulation in Olea europaea L. fruits under different water regimes. Frontiers in Plant Science 2017, 8. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A. M.; León, L.; De La Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. From olive fruits to olive Oil: Phenolic compound transfer in six different olive cultivars grown under the same agronomical conditions. International Journal of Molecular Sciences 2016, 17. [Google Scholar] [CrossRef]





| Treatments | Sampling Dates | |||||||
|---|---|---|---|---|---|---|---|---|
| 06/23 | 07/19 | 08/11 | 09/02 | 09/23 | 10/07 | 10/25 | 11/15 | |
| Control | 0.0% ± 0.00 a | 1.4% ± 0.22 a | 4.8% ± 0.61 a | 11.8% ± 0.43 a | 12.7% ± 0.80 a | 14.7% ± 1.02 a | 19.3% ± 0.40 a | 22.3% ± 0.29 b |
| Thinning -33% | 0.0% ± 0.00 a | 1.3% ± 0.12 a | 5.8% ± 0.33 a | 12.6% ± 0.38 a | 12.6% ± 0.59 a | 15.7% ± 0.61 a | 20.3% ± 0.87 a | 23.6% ± 1.13 a |
| Thinning -50% | 0.0% ± 0.00 a | 1.2% ± 0.25 a | 6.1% ± 0.47 a | 11.9% ± 0.27 a | 12.8% ± 0.72 a | 14.8% ± 0.27 a | 19.6% ± 0.84 a | 23.8% ± 0.72 a |
| Thinning -66% | 0.0% ± 0.00 a | 1.0% ± 0.26 a | 6.3% ± 0.29 a | 12.5% ± 0.38 a | 12.6% ± 0.71 a | 15.0% ± 0.76 a | 19.2% ± 1.47 a | 21.6% ± 0.96 b |
| Irrigation -60% | 0.0% ± 0.00 a | 1.1% ± 0.38 a | 6.6% ± 0.72 a | 9.6% ± 1.31 b | 12.7% ± 0.38 a | 13.6% ± 0.71 a | 19.3% ± 0.62 a | 21.2% ± 0.31 c |
| Irrigation -75% | 0.0% ± 0.00 a | 1.8% ± 0.16 a | 6.9% ± 0.56 a | 9.4% ± 0.21 b | 9.5% ± 0.61 b | 13.1% ± 1.17 a | 14.2% ± 0.71 b | 19.3% ± 0.78 c |
| Factor(p-value) | n.s. | n.s. | 0.121 | 0.003 | 0.010 | n.s. | <0.001 | 0.005 |
| Sampling Date | Treatments | Fresh Weight (g) | Dry Weight (g) | Pulp:Stone Ratio | Maturity Index |
|---|---|---|---|---|---|
| September 2nd | Control | 1.11 ± 0.06 b | 0.55 ± 0.03 b | 1.46 ± 0.03 a | 2.1 ± 0.07 c |
| Thinning -66% | 1.39 ± 0.05 a | 0.71 ± 0.03 a | 1.07 ± 0.11 b | 2.9 ± 0.04 b | |
| Irrigation -75% | 0.63 ± 0.05 c | 0.39 ± 0.03 c | 1.01 ± 0.07 b | 4.0 ± 0.07 a | |
| p-value | < 0.001 | < 0.001 | 0.003 | < 0.001 | |
| September 23rd | Control | 1.40 ± 0.09 a | 0.69 ± 0.05 a | 1.80 ± 0.05 a | 3.20 ± 0.09 c |
| Thinning -66% | 1.48 ± 0.07 a | 0.70 ± 0.05 a | 1.93 ± 0.11 a | 4.50 ± 0.06 b | |
| Irrigation -75% | 0.90 ± 0.03 b | 0.44 ± 0.01 b | 1.65 ± 0.12 a | 6.00 ± 0.11 a | |
| p-value | < 0.001 | < 0.001 | n.s. | < 0.001 | |
| November 15th | Control | 2.46 ± 0.08 a | 1.10 ± 0.03 b | 3.04 ± 0.08 a | 6.90 ± 0.01 a |
| Thinning -66% | 2.85 ± 0.15 a | 1.41 ± 0.12 a | 3.47 ± 0.20 a | 7.00 ± 0.01 a | |
| Irrigation -75% | 1.89 ± 0.09 b | 0.73 ± 0.01 c | 1.78 ± 0.05 b | 7.00 ± 0.02 a | |
| p-value | < 0.001 | < 0.001 | < 0.001 | n.s. | |
| Sampling date | Treatments | Canopy volume (m3/tree) | Production (kg/plant) | ||
| November 15th | Control | 2.69 ± 0.04 b | 1.13 ± 0.15 a | ||
| Thinning -66% | 3.15 ± 0.01 a | 0.52 ± 0.09 b | |||
| Irrigation -75% | 1.97 ± 0.01 c | 0.20 ± 0.03 b | |||
| p-value | 0.001 | < 0.001 | |||
| Phenolic class | Phenolic Subclass | Compound Name | VIP Score1 | LogFC2 |
|---|---|---|---|---|
| Flavonoids | Flavones | Apigenin 6,8-di-C-glucoside | 2.31 ± 1.54 | -0.32 |
| Chalcones | Butein | 1.68 ± 0.79 | 1.12 | |
| Flavanones | 6-Prenylnaringenin | 1.65 ± 1.82 | -0.38 | |
| Flavones | Luteolin 7-O-glucuronide | 1.63 ± 1.93 | 0.34 | |
| Anthocyanins | Malvidin 3-O-(6''-p-coumaroyl-glucoside) | 1.62 ± 1.20 | 4.00 | |
| Isoflavonoids | Glycitin | 1.59 ± 2.67 | 0.68 | |
| Flavones | Isorhoifolin | 1.55 ± 0.84 | -0.28 | |
| Flavonols | Spinacetin 3-O-(2""-p-coumaroylglucosyl) (1-6) -[apiosyl(1-2)]-glucoside | 1.44 ± 1.95 | -0.75 | |
| Flavones | 5,6-Dihydroxy-7,8,3',4'-tetramethoxyflavone | 1.42 ± 0.87 | 1.11 | |
| Anthocyanins | Cyanidin 3-O-rutinoside | 1.41 ± 1.32 | -0.21 | |
| Flavonols | Spinacetin 3-O-glucosyl-(1-6) -[apiosyl(1-2)]-glucoside | 1.37 ± 1.38 | -4.00 | |
| Flavanols | Theaflavin | 1.35 ± 0.81 | -0.63 | |
| Flavanols | (+)-Catechin | 1.35 ± 1.49 | 0.13 | |
| Lignans | Lignans | Conidendrin | 1.50 ± 1.12 | 0.36 |
| Lignans | Secoisolariciresinol | 1.41 ± 1.34 | -0.52 | |
| LMW and others | Hydroxycinnamaldehydes | Ferulaldehyde | 1.64 ± 1.07 | 0.27 |
| Alkylphenols | 3-Methylcatechol | 1.41 ± 1.08 | 0.38 | |
| Hydroxyphenylpropenes | Acetyl eugenol | 1.35 ± 1.36 | -0.32 | |
| Tyrosols | p-HPEA-EDA | 1.34 ± 1.04 | 0.28 | |
| Tyrosols | p-HPEA-AC | 1.32 ± 1.84 | -0.71 | |
| Other polyphenols | Coumestrol | 1.30 ± 1.49 | -4.00 | |
| Phenolic acids | Hydroxycinnamic acids | Sinapine | 1.92 ± 2.32 | 1.35 |
| Hydroxybenzoic acids | Ellagic acid | 1.58 ± 1.15 | 0.80 | |
| Hydroxycinnamic acids | 3,4-Dicaffeoylquinic acid | 1.50 ± 1.54 | 1.18 | |
| Hydroxycinnamic acids | p-Coumaric acid ethyl ester | 1.43 ± 1.22 | -0.15 | |
| Hydroxycinnamic acids | 1,2-Diferuloylgentiobiose | 1.38 ± 1.10 | -0.28 | |
| Stilbenes | Stilbenes | d-Viniferin | 1.76 ± 1.17 | 0.80 |
| Phenolic Class | Phenolic Subclass | Compound Name | VIP Score1 | LogFC2 |
|---|---|---|---|---|
| Flavonoids | Dihydrochalcones | Phloretin 2'-O-xylosyl-glucoside | 1.60 ± 0.54 | 1.65 |
| Flavanones | Naringenin 7-O-glucoside | 1.58 ± 0.51 | 0.48 | |
| Anthocyanins | Petunidin 3-O-rhamnoside | 1.41 ± 0.38 | 0.27 | |
| Flavones | Apigenin 6,8-di-C-glucoside | 1.40 ± 0.26 | 0.07 | |
| Flavonols | Myricetin 3-O-rhamnoside | 1.39 ± 0.57 | 0.15 | |
| Lignans | Lignans | Cyclolariciresinol | 1.63 ± 0.35 | 1.38 |
| Lignans | Secoisolariciresinol | 1.56 ± 0.41 | 0.20 | |
| Lignans | Sesamol | 1.42 ± 0.67 | 1.09 | |
| LMW and others | Other polyphenols | Pyrogallol | 1.54 ± 0.63 | 0.72 |
| Curcuminoids | Curcumin | 1.53 ± 0.73 | 0.55 | |
| Tyrosols | Ligstroside | 1.52 ± 0.33 | 1.42 | |
| Hydroxycoumarins | Scopoletin | 1.47 ± 0.56 | 0.75 | |
| Other polyphenols | 3,4-Dihydroxyphenylglycol | 1.38 ± 0.63 | 0.48 | |
| Phenolic acids | Hydroxycinnamic acids | Cinnamic acid | 1.66 ± 0.74 | 0.94 |
| Hydroxycinnamic acids | Sinapine | 1.65 ± 0.76 | 2.33 | |
| Hydroxycinnamic acids | Caffeoyl aspartic acid | 1.60 ± 0.50 | 0.79 | |
| Hydroxycinnamic acids | 3-Sinapoylquinic acid | 1.59 ± 0.42 | 1.25 | |
| Hydroxycinnamic acids | p-Coumaric acid | 1.44 ± 1.01 | 1.92 | |
| Hydroxycinnamic acids | 1-Sinapoyl-2-feruloylgentiobiose | 1.38 ± 0.52 | 0.68 | |
| Hydroxycinnamic acids | 1,2-Diferuloylgentiobiose | 1.37 ± 1.09 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
