Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Mixing renewable energy with pumped hydropower storage: Design optimization under uncertainty and other challenges

Version 1 : Received: 5 July 2023 / Approved: 5 July 2023 / Online: 6 July 2023 (13:26:55 CEST)

A peer-reviewed article of this Preprint also exists.

Zisos, A.; Sakki, G.-K.; Efstratiadis, A. Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges. Sustainability 2023, 15, 13313. Zisos, A.; Sakki, G.-K.; Efstratiadis, A. Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges. Sustainability 2023, 15, 13313.

Abstract

Hybrid renewable energy systems (HRES), complemented by pumped hydropower storage (PHS), have become increasingly popular amidst the increase of renewable energy penetration. This con-figuration is even more prosperous in remote regions that are typically not connected to the mainland power grid, where the energy independence challenge intensifies. This research focuses on the design of such systems, from the perspective of establishing an optimal mix of renewable sources that takes advantage of their complementarities and synergies, combined with the versatility of PHS. However, this design is subject to substantial complexities, due to the multiple objectives and constraints to fulfill, on the one hand, and the inherent uncertainties as well, that span over all underlying processes, i.e., external, and internal. In this vein, we utilize a proposed HRES layout for the Aegean Island of Sifnos, Greece, to develop and evaluate a comprehensive simulation-optimization scheme in deterministic and, eventually, stochastic setting, revealing the design problem under the umbrella of uncertainty. In particular, we account for three major uncertain elements, namely the wind velocity (natural process), the energy demand (anthropogenic process), and the wind-to-power conversion (internal process, expressed in terms of a probabilistic power curve). Emphasis is also given to the decision-making procedure, which requires a thorough interpretation of the uncertainty-aware optimization outcomes. Finally, since the proposed PHS uses the sea as the lower reservoir, additional technical challenges are addressed.

Keywords

hybrid renewable energy systems (HRES); pumped hydropower storage (PHS); water-energy; seawater; internal and external uncertainties; simulation; optimization; stochastics; copulas

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.