Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Structural Optimization Design of Microfluidics Chips Based on Fast Sequence Pair Algorithm

Version 1 : Received: 4 July 2023 / Approved: 5 July 2023 / Online: 6 July 2023 (02:37:14 CEST)

A peer-reviewed article of this Preprint also exists.

Wu, C.; Sun, J.; Almuaalemi, H.Y.M.; Sohan, A.S.M.M.F.; Yin, B. Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm. Micromachines 2023, 14, 1577. Wu, C.; Sun, J.; Almuaalemi, H.Y.M.; Sohan, A.S.M.M.F.; Yin, B. Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm. Micromachines 2023, 14, 1577.

Abstract

The market for microfluidic chips is experiencing significant growth; however, their development is hindered by a complex design process and low efficiency. Enhancing microfluidic chips’ design quality and efficiency has emerged as an integral approach to foster their advancement. Currently, the existing structural design schemes lack careful consideration regarding the impact of chip area, microchannel length, and the number of intersections on chip design. This inadequacy leads to redundant chip structures resulting from the separation of layout and wiring design. This study proposes a structural optimization method for microfluidic chips to address these issues utilizing a simulated annealing algorithm. The simulated annealing algorithm generates an initial solution in advance using the fast sequence pair algorithm. Subsequently, an improved simulated annealing algorithm is employed to obtain the optimal solution for the device layout. During the wiring stage, an advanced wiring method is used to designate the high wiring area, thereby increasing the success rate of microfluidic chip wiring. Furthermore, the connection between layout and routing is reinforced through an improved layout adjustment method, which reduces the length of microchannels and the number of intersections. Finally, the effectiveness of the structural optimization approach is validated through six sets of test cases, successfully achieving the objective of enhancing the design quality of microfluidic chips.

Keywords

microfluidic chip; simulated annealing algorithm; fast sequence pair algorithm; structural design; optimization algorithm

Subject

Engineering, Bioengineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.