Submitted:
27 June 2023
Posted:
27 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Tropical trees are unlikely to be able to adapt to anthropogenic climate change
3. Many tropical tree species are shifting their geographic distributions in response to modern climate change, but not fast enough to offset warming
4. We do not know (yet) if tropical trees can acclimate to climate change
5. Tropical dendroecology
6. Historical collections
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Feeley, K.J.; Stroud, J.T. Where on Earth are the “tropics”? Frontiers of Biogeography 2018, 10.
- Joppa, L.N.; Roberts, D.L.; Myers, N.; Pimm, S.L. Biodiversity hotspots house most undiscovered plant species. Proceedings of the National Academy of Sciences 2011, 108, 13171-13176. [CrossRef]
- Gatti, R.C.; Reich, P.B.; Gamarra, J.G.P.; Crowther, T.; Hui, C.; Morera, A.; Bastin, J.-F.; de-Miguel, S.; Nabuurs, G.-J.; Svenning, J.-C.; et al. The number of tree species on Earth. Proceedings of the National Academy of Sciences 2022, 119, e2115329119. [CrossRef]
- Fedele, G.; Donatti, C.I.; Bornacelly, I.; Hole, D.G. Nature-dependent people: Mapping human direct use of nature for basic needs across the tropics. Global Environmental Change 2021, 71, 102368. [CrossRef]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; De Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change 2021, 11, 234-240. [CrossRef]
- Duque, A.; Peña, M.A.; Cuesta, F.; González-Caro, S.; Kennedy, P.; Phillips, O.L.; Calderón-Loor, M.; Blundo, C.; Carilla, J.; Cayola, L.; et al. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications 2021, 12, 2138. [CrossRef]
- Lawrence, D.; Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nature Climate Change 2015, 5, 27-36. [CrossRef]
- ter Steege, H.; Pitman, N.C.A.; Killeen, T.J.; Laurance, W.F.; Peres, C.A.; Guevara, J.E.; Salomão, R.P.; Castilho, C.V.; Amaral, I.L.; Matos, F.D.d.A.; et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances 2015, 1, e1500936. [CrossRef]
- Amigo, I. When will the Amazon hit a tipping point? Nature 2020, 578, 505-508.
- Boulton, C.A.; Lenton, T.M.; Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nature Climate Change 2022, 12, 271-278. [CrossRef]
- Feeley, K.J.; Rehm, E.M.; Machovina, B. The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? . Frontiers in Biogeography 2012, 4, 69-82. [CrossRef]
- Laurance, W.F.; Nascimento, H.E.M.; Laurance, S.G.; Condit, R.; D'Angelo, S.; Andrade, A. Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. Forest Ecology and Management 2004, 190, 131-143. [CrossRef]
- Chambers, J.; Eldik, T.V.; Southon, J.; Higuchi, N. Tree Age Structure in Tropical Forests of Central Amazonia. In Lessons From Amazonia: The Ecology and Conservation of a Fragmented Forest, Bierregaard, R.O., Jr., Gascon, C., Lovejoy, T.E., Mesquita, R., Eds.; Yale University Press: New Haven, Connecticut, USA, 2001.
- Chambers, J.Q.; Higuchi, N.; Schimel, J.P. Ancient trees in Amazonia. Nature 1998, 391, 135. [CrossRef]
- Wright, S.J.; Jaramillo, M.A.; Pavon, J.; Condit, R.; Hubbell, S.P.; Foster, R.B. Reproductive size thresholds in tropical trees: variation among individuals, species and forests. Journal of Tropical Ecology 2005, 21, 307-315. [CrossRef]
- Anderson, J.; Song, B.H. Plant adaptation to climate change - Where are we? J Syst Evol 2020, 58, 533-545. [CrossRef]
- Shaw, R.G.; Etterson, J.R. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytologist 2012, 195, 752-765. [CrossRef]
- Smith, S.A.; Donoghue, M.J. Rates of Molecular Evolution Are Linked to Life History in Flowering Plants. Science 2008, 322, 86-89. [CrossRef]
- Jezkova, T.; Wiens, J.J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proceedings of the Royal Society B: Biological Sciences 2016, 283, 20162104. [CrossRef]
- Liu, H.; Ye, Q.; Wiens, J.J. Climatic-niche evolution follows similar rules in plants and animals. Nature Ecology & Evolution 2020, 4, 753-763. [CrossRef]
- Bennett, J.M.; Sunday, J.; Calosi, P.; Villalobos, F.; Martínez, B.; Molina-Venegas, R.; Araújo, M.B.; Algar, A.C.; Clusella-Trullas, S.; Hawkins, B.A.; et al. The evolution of critical thermal limits of life on Earth. Nature Communications 2021, 12, 1198. [CrossRef]
- Ramírez, S.; González-Caro, S.; Phillips, J.; Cabrera, E.; Feeley, K.J.; Duque, Á. The influence of historical dispersal on the phylogenetic structure of tree communities in the tropical Andes. BIOTROPICA 2019, 51, 500-508. [CrossRef]
- Griffiths, A.R.; Silman, M.R.; Farfán Rios, W.; Feeley, K.J.; García Cabrera, K.; Meir, P.; Salinas, N.; Dexter, K.G. Evolutionary heritage shapes tree distributions along an Amazon-to-Andes elevation gradient. BIOTROPICA 2022, In Press. [CrossRef]
- Wang, Y.; Pineda-Munoz, S.; McGuire, J.L. Plants maintain climate fidelity in the face of dynamic climate change. Proceedings of the National Academy of Sciences 2023, 120, e2201946119. [CrossRef]
- Linck, E.B.; Freeman, B.G.; Cadena, C.D.; Ghalambor, C.K. Evolutionary conservatism will limit responses to climate change in the tropics. Biology Letters 2021, 17, 20210363. [CrossRef]
- Hardy, O.J.; Couteron, P.; Munoz, F.; Ramesh, B.R.; Pélissier, R. Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism. Global Ecology and Biogeography 2012, 21, 1007-1016. [CrossRef]
- Bush, M.B.; Silman, M.R.; Urrego, D.H. 48,000 years of climate and forest change in a biodiversity hot spot. Science 2004, 303, 827-829. [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2021.
- Mann, M.E.; Zhang, Z.; Hughes, M.K.; Bradley, R.S.; Miller, S.K.; Rutherford, S.; Ni, F. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences 2008, 105, 13252. [CrossRef]
- Kemp, D.B.; Eichenseer, K.; Kiessling, W. Maximum rates of climate change are systematically underestimated in the geological record. Nature Communications 2015, 6, 8890. [CrossRef]
- Bell, G. Evolutionary Rescue. Annual Review of Ecology, Evolution, and Systematics 2017, 48, 605-627. [CrossRef]
- Hanlon, V.C.T.; Otto, S.P.; Aitken, S.N. Somatic mutations substantially increase the per-generation mutation rate in the conifer Picea sitchensis. Evolution Letters 2019, 3, 348-358. [CrossRef]
- Lanfear, R. Do plants have a segregated germline? PLOS Biology 2018, 16, e2005439. [CrossRef]
- Schmid-Siegert, E.; Sarkar, N.; Iseli, C.; Calderon, S.; Gouhier-Darimont, C.; Chrast, J.; Cattaneo, P.; Schütz, F.; Farinelli, L.; Pagni, M.; et al. Low number of fixed somatic mutations in a long-lived oak tree. Nature Plants 2017, 3, 926-929. [CrossRef]
- Watson, J.M.; Platzer, A.; Kazda, A.; Akimcheva, S.; Valuchova, S.; Nizhynska, V.; Nordborg, M.; Riha, K. Germline replications and somatic mutation accumulation are independent of vegetative life span in <i>Arabidopsis</i>. Proceedings of the National Academy of Sciences 2016, 113, 12226-12231. [CrossRef]
- Suryanarayanan, T.S.; Shaanker, R.U. Can fungal endophytes fast-track plant adaptations to climate change? Fungal Ecology 2021, 50, 101039. [CrossRef]
- Usman, M.; Ho-Plágaro, T.; Frank, H.E.R.; Calvo-Polanco, M.; Gaillard, I.; Garcia, K.; Zimmermann, S.D. Mycorrhizal Symbiosis for Better Adaptation of Trees to Abiotic Stress Caused by Climate Change in Temperate and Boreal Forests. Frontiers in Forests and Global Change 2021, 4. [CrossRef]
- Afkhami, M.E. Past microbial stress benefits tree resilience. Science 2023, 380, 798-799. [CrossRef]
- Rodriguez, R.; Redman, R. More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. Journal of Experimental Botany 2008, 59, 1109-1114. [CrossRef]
- Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.-O.; Redman, R.S. Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal 2008, 2, 404-416. [CrossRef]
- Redman, R.S.; Sheehan, K.B.; Stout, R.G.; Rodriguez, R.J.; Henson, J.M. Thermotolerance Generated by Plant/Fungal Symbiosis. Science 2002, 298, 1581-1581. [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science 2019, 10. [CrossRef]
- Liu, H.; Brettell, L.E.; Qiu, Z.; Singh, B.K. Microbiome-Mediated Stress Resistance in Plants. Trends in Plant Science 2020, 25, 733-743. [CrossRef]
- Márquez, L.M.; Redman, R.S.; Rodriguez, R.J.; Roossinck, M.J. A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance. Science 2007, 315, 513-515. [CrossRef]
- Allsup, C.M.; George, I.; Lankau, R.A. Shifting microbial communities can enhance tree tolerance to changing climates. Science 2023, 380, 835-840. [CrossRef]
- Reva, M.; Cano, C.; Herrera, M.-A.; Bago, A. Arbuscular Mycorrhizal Inoculation Enhances Endurance to Severe Heat Stress in Three Horticultural Crops. HortScience horts 2021, 56, 396-406. [CrossRef]
- Mohan, J.E.; Cowden, C.C.; Baas, P.; Dawadi, A.; Frankson, P.T.; Helmick, K.; Hughes, E.; Khan, S.; Lang, A.; Machmuller, M.; et al. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecology 2014, 10, 3-19. [CrossRef]
- Donoghue, M.J. A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences 2008, 105, 11549-11555. [CrossRef]
- Edwards, E.J.; Donoghue, M.J. Is it easy to move and easy to evolve? Evolutionary accessibility and adaptation. Journal of Experimental Botany 2013, 64, 4047-4052. [CrossRef]
- Feeley, K.J.; Silman, M.R.; Bush, M.B.; Farfan, W.; Cabrera, K.G.; Malhi, Y.; Meir, P.; Revilla, N.S.; Quisiyupanqui, M.N.R.; Saatchi, S. Upslope migration of Andean trees. Journal of Biogeography 2011, 38, 783-791. [CrossRef]
- Feeley, K.J.; Hurtado, J.; Saatchi, S.; Silman, M.R.; Clark, D.B. Compositional shifts in Costa Rican forests due to climate-driven species migrations. Global Change Biology 2013, 19, 3472-2480. [CrossRef]
- Duque, A.; Stevenson, P.; Feeley, K.J. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proceedings of the National Academy of Sciences USA 2015, 112, 10744-10749. [CrossRef]
- Fadrique, B.; Báez, S.; Duque, Á.; Malizia, A.; Blundo, C.; Carilla, J.; Osinaga-Acosta, O.; Malizia, L.; Silman, M.; Farfán-Ríos, W.; et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 2018, 564, 207-212. [CrossRef]
- Feeley, K.J.; Davies, S.J.; Perez, R.; Hubbell, S.P.; Foster, R.B. Directional changes in the species composition of a tropical forest. Ecology 2011, 92, 871-882. [CrossRef]
- Feeley, K.J. Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Global Change Biology 2012, 18, 1335–1341. [CrossRef]
- Freeman, B.G.; Song, Y.; Feeley, K.J.; Zhu, K. Montane species track rising temperatures better in the tropics than in the temperate zone. Ecology letters 2021, 24, 1697-1708. [CrossRef]
- Esquivel-Muelbert, A.; Baker, T.R.; Dexter, K.G.; Lewis, S.L.; Brienen, R.J.; Feldpausch, T.R.; Lloyd, J.; Monteagudo-Mendoza, A.; Arroyo, L.; Álvarez-Dávila, E. Compositional response of Amazon forests to climate change. Global change biology 2019, 25, 39-56. [CrossRef]
- Gaston, K.J.; Chown, S.L. Why Rapoport's Rule Does Not Generalise. Oikos 1999, 84, 309-312. [CrossRef]
- Terborgh, J. On the Notion of Favorableness in Plant Ecology. The American Naturalist 1973, 107, 481-501. [CrossRef]
- Colwell, R.K.; Brehm, G.; Cardelus, C.L.; Gilman, A.C.; Longino, J.T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 2008, 322, 258-261. [CrossRef]
- Wright, S.J.; Muller-Landau, H.C.; Schipper, J. The future of tropical species on a warmer planet. Conservation Biology 2009, 23, 1418-1426. [CrossRef]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature 2009, 462, 1052-1056. [CrossRef]
- Fricke, E.C.; Ordonez, A.; Rogers, H.S.; Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 2022, 375, 210-214. [CrossRef]
- Rehm, E.; Feeley, K.J. Many species risk mountain top extinction long before they reach the top. Frontiers of Biogeography 2016, 8. [CrossRef]
- Feeley, K.J.; Rehm, E.M.; Stroud, J. There are many barriers to species' migrations. Frontiers of biogeography 2014, 6. [CrossRef]
- Lutz, D.A.; Powell, R.L.; Silman, M.R. Four decades of Andean timberline migration and implications for biodiversity loss with climate change. PLoS ONE 2013, 8, e74496. [CrossRef]
- Rehm, E.M.; Feeley, K.J. The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences. Ecography 2015, 38, 1167-1175. [CrossRef]
- Rehm, E.M.; Feeley, K.J. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines. Ecology 2015, 96, 1856-1865. [CrossRef]
- Girardin, C.A.J.; Malhi, Y.; Aragao, L.; Mamani, M.; Huaraca Huasco, W.; Durand, L.; Feeley, K.; Rapp, J.; SILVA-ESPEJO, J.; Silman, M. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 2010, 16, 3176-3192. [CrossRef]
- Huasco, W.H.; Girardin, C.A.J.; Doughty, C.E.; Metcalfe, D.B.; Baca, L.D.; Silva-Espejo, J.E.; Cabrera, D.G.; Aragão, L.E.O.C.; Davila, A.R.; Marthews, T.R.; et al. Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes. Plant Ecology & Diversity 2014, 7, 125-142. [CrossRef]
- Higgins, M.A.; Ruokolainen, K.; Tuomisto, H.; Llerena, N.; Cardenas, G.; Phillips, O.L.; Vásquez, R.; Räsänen, M. Geological control of floristic composition in Amazonian forests. Journal of Biogeography 2011, 38, 2136-2149. [CrossRef]
- Fadrique, B.; Feeley, K.J. Commentary: Novel competitors shape species' responses to climate change. Frontiers in Ecology and Evolution 2016, 4. [CrossRef]
- Boisvert-Marsh, L.; de Blois, S. Unravelling potential northward migration pathways for tree species under climate change. Journal of Biogeography 2021, 48, 1088-1100. [CrossRef]
- Tanner, E.V.J.; Bellingham, P.J.; Healey, J.R.; Feeley, K.J. Hurricane disturbance accelerated the thermophilization of a Jamaican montane forest. Ecography 2022, 2022, e06100. [CrossRef]
- Feeley, K.J.; Rehm, E.M. Amazon's vulnerability to climate change heightened by deforestation and man-made dispersal barriers. Global Change Biology 2012, 18, 3606-3614. [CrossRef]
- Senior, R.A.; Hill, J.K.; Edwards, D.P. Global loss of climate connectivity in tropical forests. Nature Climate Change 2019, 9, 623-626. [CrossRef]
- Tito, R.; Vasconcelos, H.L.; Feeley, K.J. Mountain ecosystems as natural laboratories for climate change experiments. Frontiers in Forests and Global Change 2020, 3, 38. [CrossRef]
- De Frenne, P.; Rodríguez-Sánchez, F.; Coomes, D.A.; Baeten, L.; Verstraeten, G.; Vellend, M.; Bernhardt-Römermann, M.; Brown, C.D.; Brunet, J.; Cornelis, J. Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences 2013, 110, 18561-18565. [CrossRef]
- Souza, M.L.; Duarte, A.A.; Lovato, M.B.; Fagundes, M.; Valladares, F.; Lemos-Filho, J.P. Climatic factors shaping intraspecific leaf trait variation of a neotropical tree along a rainfall gradient. PLOS ONE 2018, 13, e0208512. [CrossRef]
- Slot, M.; Cala, D.; Aranda, J.; Virgo, A.; Michaletz, S.T.; Winter, K. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant, Cell & Environment 2021, 44, 2414-2427. [CrossRef]
- Spence, A.R.; Tingley, M.W. The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography 2020, 43, 1571-1590. [CrossRef]
- Halbritter, A.H.; Fior, S.; Keller, I.; Billeter, R.; Edwards, P.J.; Holderegger, R.; Karrenberg, S.; Pluess, A.R.; Widmer, A.; Alexander, J.M. Trait differentiation and adaptation of plants along elevation gradients. Journal of Evolutionary Biology 2018, 31, 784-800. [CrossRef]
- Hoffmann, A.A.; Sgro, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479-485. [CrossRef]
- Henn, J.J.; Buzzard, V.; Enquist, B.J.; Halbritter, A.H.; Klanderud, K.; Maitner, B.S.; Michaletz, S.T.; Pötsch, C.; Seltzer, L.; Telford, R.J.; et al. Intraspecific Trait Variation and Phenotypic Plasticity Mediate Alpine Plant Species Response to Climate Change. Frontiers in Plant Science 2018, 9. [CrossRef]
- Pfennigwerth, A.A.; Bailey, J.K.; Schweitzer, J.A. Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity. AoB PLANTS 2017, 9. [CrossRef]
- Aspinwall, M.J.; Vårhammar, A.; Blackman, C.J.; Tjoelker, M.G.; Ahrens, C.; Byrne, M.; Tissue, D.T.; Rymer, P.D. Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla. Tree Physiology 2017, 37, 1095-1112. [CrossRef]
- Chung, H.; Muraoka, H.; Nakamura, M.; Han, S.; Muller, O.; Son, Y. Experimental warming studies on tree species and forest ecosystems: a literature review. Journal of Plant Research 2013, 126, 447-460. [CrossRef]
- Manishimwe, A.; Ntirugulirwa, B.; Zibera, E.; Nyirambangutse, B.; Mujawamariya, M.; Dusenge, M.E.; Bizuru, E.; Nsabimana, D.; Uddling, J.; Wallin, G. Warming Responses of Leaf Morphology Are Highly Variable among Tropical Tree Species. Forests 2022, 13, 219. [CrossRef]
- Mujawamariya, M.; Wittemann, M.; Dusenge, M.E.; Manishimwe, A.; Ntirugulirwa, B.; Zibera, E.; Nsabimana, D.; Wallin, G.; Uddling, J. Contrasting warming responses of photosynthesis in early- and late-successional tropical trees. Tree Physiology 2023. [CrossRef]
- Tarvainen, L.; Wittemann, M.; Mujawamariya, M.; Manishimwe, A.; Zibera, E.; Ntirugulirwa, B.; Ract, C.; Manzi, O.J.L.; Andersson, M.X.; Spetea, C.; et al. Handling the heat – photosynthetic thermal stress in tropical trees. New Phytologist 2022, 233, 236-250. [CrossRef]
- Dusenge, M.E.; Wittemann, M.; Mujawamariya, M.; Ntawuhiganayo, E.B.; Zibera, E.; Ntirugulirwa, B.; Way, D.A.; Nsabimana, D.; Uddling, J.; Wallin, G. Limited thermal acclimation of photosynthesis in tropical montane tree species. Global Change Biology 2021, 27, 4860-4878. [CrossRef]
- Cox, A.J.F.; Hartley, I.P.; Meir, P.; Sitch, S.; Dusenge, M.E.; Restrepo, Z.; González-Caro, S.; Villegas, J.C.; Uddling, J.; Mercado, L.M. Acclimation of photosynthetic capacity and foliar respiration in Andean tree species to temperature change. New Phytologist 2023, 238, 2329-2344. [CrossRef]
- Carter, K.R.; Wood, T.E.; Reed, S.C.; Schwartz, E.C.; Reinsel, M.B.; Yang, X.; Cavaleri, M.A. Photosynthetic and Respiratory Acclimation of Understory Shrubs in Response to in situ Experimental Warming of a Wet Tropical Forest. Frontiers in Forests and Global Change 2020, 3. [CrossRef]
- Brum, M.; Vadeboncoeur, M.; Asbjornsen, H.; Puma Vilca, B.L.; Galiano, D.; Horwath, A.B.; Metcalfe, D.B. ‘Ecophysiological controls on water use of tropical cloud forest trees in response to experimental drought’. Tree Physiology 2023. [CrossRef]
- Bartholomew, D.C.; Bittencourt, P.R.L.; da Costa, A.C.L.; Banin, L.F.; de Britto Costa, P.; Coughlin, S.I.; Domingues, T.F.; Ferreira, L.V.; Giles, A.; Mencuccini, M.; et al. Small tropical forest trees have a greater capacity to adjust carbon metabolism to long-term drought than large canopy trees. Plant, Cell & Environment 2020, 43, 2380-2393. [CrossRef]
- Kimball, B.A.; Alonso-Rodríguez, A.M.; Cavaleri, M.A.; Reed, S.C.; González, G.; Wood, T.E. Infrared heater system for warming tropical forest understory plants and soils. Ecology and Evolution 2018, 8, 1932-1944. [CrossRef]
- Cavaleri, M.A.; Reed, S.C.; Smith, W.K.; Wood, T.E. Urgent need for warming experiments in tropical forests. Global Change Biology 2015, 21, 2111-2121. [CrossRef]
- Slot, M.; Winter, K. Photosynthetic acclimation to warming in tropical forest tree seedlings. Journal of Experimental Botany 2017, 68, 2275-2284. [CrossRef]
- Cheesman, A.W.; Winter, K. Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings. Journal of Experimental Botany 2013, 64, 3817-3828. [CrossRef]
- Wittemann, M.; Andersson, M.X.; Ntirugulirwa, B.; Tarvainen, L.; Wallin, G.; Uddling, J. Temperature acclimation of net photosynthesis and its underlying component processes in four tropical tree species. Tree Physiology 2022, 42, 1188-1202. [CrossRef]
- Brienen, R.J.W.; Schöngart, J.; Zuidema, P.A. Tree Rings in the Tropics: Insights into the Ecology and Climate Sensitivity of Tropical Trees. In Tropical Tree Physiology: Adaptations and Responses in a Changing Environment, Goldstein, G., Santiago, L.S., Eds.; Springer International Publishing: Cham, 2016; pp. 439-461. [CrossRef]
- Locosselli, G.M.; Brienen, R.J.W.; Leite, M.d.S.; Gloor, M.; Krottenthaler, S.; Oliveira, A.A.d.; Barichivich, J.; Anhuf, D.; Ceccantini, G.; Schöngart, J.; et al. Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proceedings of the National Academy of Sciences 2020, 117, 33358-33364. [CrossRef]
- Giraldo, J.A.; del Valle, J.I.; González-Caro, S.; David, D.A.; Taylor, T.; Tobón, C.; Sierra, C.A. Tree growth periodicity in the ever-wet tropical forest of the Americas. Journal of Ecology 2023, 111, 889-902. [CrossRef]
- Worbes, M.; Junk, W.J. Dating Tropical Trees by Means of 14C From Bomb Tests. Ecology 1989, 70, 503-507. [CrossRef]
- Anchukaitis, K.J.; Evans, M.N.; Wheelwright, N.T.; Schrag, D.P. Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. Journal of Geophysical Research: Biogeosciences 2008, 113. [CrossRef]
- Fonti, P.; von Arx, G.; García-González, I.; Eilmann, B.; Sass-Klaassen, U.; Gärtner, H.; Eckstein, D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist 2010, 185, 42-53. [CrossRef]
- van der Sleen, P.; Groenendijk, P.; Vlam, M.; Anten, N.P.; Boom, A.; Bongers, F.; Pons, T.L.; Terburg, G.; Zuidema, P.A. No growth stimulation of tropical trees by 150 years of CO 2 fertilization but water-use efficiency increased. Nature geoscience 2015, 8, 24. [CrossRef]
- Nock, C.A.; Baker, P.J.; Wanek, W.; Leis, A.; Grabner, M.; Bunyavejchewin, S.; Hietz, P. Long-term increases in intrinsic water-use efficiency do not lead to increased stem growth in a tropical monsoon forest in western Thailand. Global Change Biology 2011, 17, 1049-1063. [CrossRef]
- Battipaglia, G.; Zalloni, E.; Castaldi, S.; Marzaioli, F.; Cazzolla-Gatti, R.; Lasserre, B.; Tognetti, R.; Marchetti, M.; Valentini, R. Long tree-ring chronologies provide evidence of recent tree growth decrease in a central African tropical forest. PloS one 2015, 10, e0120962. [CrossRef]
- Urrutia-Jalabert, R.; Malhi, Y.; Barichivich, J.; Lara, A.; Delgado-Huertas, A.; Rodríguez, C.G.; Cuq, E. Increased water use efficiency but contrasting tree growth patterns in Fitzroya cupressoides forests of southern Chile during recent decades. Journal of Geophysical Research: Biogeosciences 2015, 120, 2505-252410 . [CrossRef]
- Adams, M.A.; Buckley, T.N.; Turnbull, T.L. Rainfall drives variation in rates of change in intrinsic water use efficiency of tropical forests. Nature Communications 2019, 10, 3661. [CrossRef]
- Groenendijk, P.; Van Der Sleen, P.; Vlam, M.; Bunyavejchewin, S.; Bongers, F.; Zuidema, P.A. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis. Global change biology 2015, 21, 3762-3776. [CrossRef]
- Zuidema, P.A.; Babst, F.; Groenendijk, P.; Trouet, V.; Abiyu, A.; Acuña-Soto, R.; Adenesky-Filho, E.; Alfaro-Sánchez, R.; Aragão, J.R.V.; Assis-Pereira, G.; et al. Tropical tree growth driven by dry-season climate variability. Nature Geoscience 2022, 15, 269-276. [CrossRef]
- Feeley, K.J.; Wright, S.J.; Supardi, M.N.N.; Kassim, A.R.; Davies, S.J. Decelerating growth in tropical forest trees. Ecology Letters 2007, 10, 461-469. [CrossRef]
- Dong, S.X.; Davies, S.J.; Ashton, P.S.; Bunyavejchewin, S.; Supardi, M.N.N.; Kassim, A.R.; Tan, S.; Moorcroft, P.R. Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests. Proceedings of the Royal Society B: Biological Sciences 2012, 279, 3923-3931. [CrossRef]
- Clark, D.B.; Clark, D.A.; Oberbauer, S.F. Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Global Change Biology 2010, 16, 747-759. [CrossRef]
- Bauman, D.; Fortunel, C.; Cernusak, L.A.; Bentley, L.P.; McMahon, S.M.; Rifai, S.W.; Aguirre-Gutiérrez, J.; Oliveras, I.; Bradford, M.; Laurance, S.G.W.; et al. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Global Change Biology 2022, 28, 1414-1432. [CrossRef]
- Miller-Rushing, A.J.; Primack, R.B.; Templer, P.H.; Rathbone, S.; Mukunda, S. Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees. American Journal of Botany 2009, 96, 1779-1786. [CrossRef]
- Bauters, M.; Meeus, S.; Barthel, M.; Stoffelen, P.; De Deurwaerder, H.P.T.; Meunier, F.; Drake, T.W.; Ponette, Q.; Ebuy, J.; Vermeir, P.; et al. Century-long apparent decrease in intrinsic water-use efficiency with no evidence of progressive nutrient limitation in African tropical forests. Global Change Biology 2020, 26, 4449-4461. [CrossRef]
- Guerin, G.R.; Wen, H.; Lowe, A.J. Leaf morphology shift linked to climate change. Biology letters 2012, 8, 882-886. [CrossRef]
- Li, Y.; Zou, D.; Shrestha, N.; Xu, X.; Wang, Q.; Jia, W.; Wang, Z. Spatiotemporal variation in leaf size and shape in response to climate. Journal of Plant Ecology 2019, 13, 87-96. [CrossRef]
- Brienen, R.J.; Zuidema, P.A.; During, H.J. Autocorrelated growth of tropical forest trees: unraveling patterns and quantifying consequences. Forest Ecology and Management 2006, 237, 179-190. [CrossRef]
- Bowman, D.M.; Brienen, R.J.; Gloor, E.; Phillips, O.L.; Prior, L.D. Detecting trends in tree growth: not so simple. Trends in plant science 2013, 18, 11-17. [CrossRef]
- Nehrbass-Ahles, C.; Babst, F.; Klesse, S.; Nötzli, M.; Bouriaud, O.; Neukom, R.; Dobbertin, M.; Frank, D. The influence of sampling design on tree-ring-based quantification of forest growth. Global change biology 2014, 20, 2867-2885. [CrossRef]
- Brienen, R.J.; Gloor, E.; Zuidema, P.A. Detecting evidence for CO2 fertilization from tree ring studies: The potential role of sampling biases. Global Biogeochemical Cycles 2012, 26. [CrossRef]
- Peters, R.L.; Groenendijk, P.; Vlam, M.; Zuidema, P.A. Detecting long-term growth trends using tree rings: a critical evaluation of methods. Global change biology 2015, 21, 2040-2054. [CrossRef]
- Brienen, R.J.; Gloor, M.; Ziv, G. Tree demography dominates long-term growth trends inferred from tree rings. Global change biology 2017, 23, 474-484. [CrossRef]
- Duchesne, L.; Houle, D.; Ouimet, R.; Caldwell, L.; Gloor, M.; Brienen, R. Large apparent growth increases in boreal forests inferred from tree-rings are an artefact of sampling biases. Scientific reports 2019, 9, 6832. [CrossRef]
- Klesse, S.; DeRose, R.J.; Guiterman, C.H.; Lynch, A.M.; O’Connor, C.D.; Shaw, J.D.; Evans, M.E. Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nature communications 2018, 9, 5336. [CrossRef]
- Corlett, R.T. Impacts of warming on tropical lowland rainforests. Trends in Ecology & Evolution 2011. [CrossRef]
- Feeley, K.J.; Malhi, Y.; Zelazowski, P.; Silman, M.R. The relative importance of deforestation, precipitation change, and temperature sensitivity in determining the future distributions and diversity of Amazonian plant species. Global Change Biology 2012, 18, 2636–2647. [CrossRef]
- Yang, Y.; Zhu, Q.; Peng, C.; Wang, H.; Chen, H. From plant functional types to plant functional traits:A new paradigm in modelling global vegetation dynamics. Progress in Physical Geography: Earth and Environment 2015, 39, 514-535. [CrossRef]
- Madani, N.; Kimball, J.S.; Ballantyne, A.P.; Affleck, D.L.R.; van Bodegom, P.M.; Reich, P.B.; Kattge, J.; Sala, A.; Nazeri, M.; Jones, M.O.; et al. Future global productivity will be affected by plant trait response to climate. Scientific Reports 2018, 8, 2870. [CrossRef]
- Rogers, A.; Medlyn, B.E.; Dukes, J.S.; Bonan, G.; von Caemmerer, S.; Dietze, M.C.; Kattge, J.; Leakey, A.D.B.; Mercado, L.M.; Niinemets, Ü.; et al. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist 2017, 213, 22-42. [CrossRef]
- Kumarathunge, D.P.; Medlyn, B.E.; Drake, J.E.; Tjoelker, M.G.; Aspinwall, M.J.; Battaglia, M.; Cano, F.J.; Carter, K.R.; Cavaleri, M.A.; Cernusak, L.A.; et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist 2019, 222, 768-784. [CrossRef]
- Kovenock, M.; Swann, A.L.S. Leaf Trait Acclimation Amplifies Simulated Climate Warming in Response to Elevated Carbon Dioxide. Global Biogeochemical Cycles 2018, 32, 1437-1448. [CrossRef]
- Oliver, R.J.; Mercado, L.M.; Clark, D.B.; Huntingford, C.; Taylor, C.M.; Vidale, P.L.; McGuire, P.C.; Todt, M.; Folwell, S.; Shamsudheen Semeena, V. Improved representation of plant physiology in the JULES-vn5. 6 land surface model: photosynthesis, stomatal conductance and thermal acclimation. Geoscientific Model Development 2022, 15, 5567-5592. [CrossRef]
- Mercado, L.M.; Medlyn, B.E.; Huntingford, C.; Oliver, R.J.; Clark, D.B.; Sitch, S.; Zelazowski, P.; Kattge, J.; Harper, A.B.; Cox, P.M. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. New Phytol 2018, 218, 1462-1477. [CrossRef]
- Smith, N.G.; Dukes, J.S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Global Change Biology 2013, 19, 45-63. [CrossRef]
- Corlett, R.T. Climate change in the tropics: The end of the world as we know it? Biological Conservation 2012, 151, 22-25.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
