Submitted:
26 June 2023
Posted:
26 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Particle in a Markov cube
3. The Markov particle by non-classical information entropy space
4. The quantum–classical correspondence
5. Conclusions
References
- Bransden, B. H, Joachain, C. J. Quantum mechanics . Essex: Pearson Education. 2000. ISBN 978-0-582-35691-7.
- Davies, John H. The Physics of Low-Dimensional Semiconductors: An Introduction (6th reprint ed.). Cambridge University Press, 2006.
- Griffiths, David J. Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. 2004. ISBN 978-0-13-111892-8.
- Rice, C.V.; Griffin, G.A. “Simple Syntheses of CdSe Quantum Dots”. Journal of Chemical Education 2008, 85, 842. [Google Scholar] [CrossRef]
- Lodovico. Lappetito, Quantum Dots: A True “Particle in a Box” System”. Physics Open Lab. (20 November 2015).
- Overney, René M. “Quantum Confinement” .University of Washington. November 2016. 2016.
- Zahn, Dietrich R.T. “Surface and Interface Properties of Semiconductor Quantum Dots by Raman Spectroscopy” . Technische Universität Chemnitz. Retrieved 5 November 2016.
- Bentolila, Laurent A.; Ebenstein, Yuval “Quantum Dots for In Vivo Small-Animal Imaging”. Journal of Nuclear Medicine. 2009, 50, 49496. [CrossRef]
- Alberto, P, Fiolhais, C; Gil, V M S. “Relativistic particle in a box” . European Journal of Physics. 1996, 17, 19–24. [CrossRef]
- C. Geng, X. Di, X. Tang, H. Han Med. Phys. 2023. [CrossRef]
- C.E Keen, A sheet of quantum dots enhances Cherenkov imaging of radiotherapy dose Physics World, (12 Jan 2023), IOP Publishing.
- D. Fiscaletti. The Geometry of Quantum Potential ISBN: 9789813227972 (Print) 19 pages, 9789813227989 (eBook) Published: 2018 by WSP. [CrossRef]
- Weyl, H.: Sitzber. Preuss. Akad. Wiss. Berlin 1918, 465. 1918; 465.
- Weyl, H. Space, Time, Matter. Dover, New York, 1922.
- Wheeler, J.T. Quantum measurement and geometry. Phys. Rev. D 1990, 41, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Wood, W.R., Papini, G.: A geometric approach to the quantum mechanics of de-Broglie–Bohm and Vigier. In: The Present Status of Quantum Theory of Light, Proc. of Symposium in Honor of J.P. Vigier,York University, 1995, 27–30 Aug.
- Novello, M.; Salim, J.M.; Falciano, F.T. On a geometrical description of quantum mechanics. Int. J. Geom. Methods Mod. Phys. 2011, 8, 87–98. [Google Scholar] [CrossRef]
- Fiscaletti, D.; Licata, I. Weyl geometries, Fisher information and quantum entropy in quantum mechanics. Int. J. Theor. Phys. 2012, 51, 3587–3595. [Google Scholar] [CrossRef]
- G. Resconi, I. Licata, D. Fiscaletti, Entropy 2013, 15, 3602–3619.
- A. Markoff. Sur les formes quadratiques binaires ind’efinies. Math. Ann. 1879, 15, 381–406.
- R C. Reutenauer, From Christoffel words to Markoff numbers. Oxford University Press, Oxford, 2019.
- A M. Aigner, Markov’s theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, Cham, 2013.
- K. Lee, L. Li, M. Rabideau, R. Schiffler, On the ordering of the Markov numbers, arXiv:2010.13010 [math.NT] (11 Oct 2022).
- G. Frobenius, Uber die Markoffschen Zahlen, S. B. Preuss. Akad. Wiss. Berlin 1913, 458–487; available ¨ in Gesammelte Abhandlungen Band III, Springer, 1968, 598–627.
- D. Zagier, On the number of Markoff numbers below a given bound, Math. Comp. 1982, 39, 709–723. MR669663.
- C. Matheus, C.G. Moreira, Diophantine Approximation, Lagrange and Markov Spectra, and Dynamical Cantor Sets, Notices of the American mathematical society 2021, 68, 1301–1311.
- Guy, R. K. “Markoff Numbers”. §D12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994; pp. 166–168.
- Sloane, N. J. A. Sequences A002559/M1432 and A030452 in “The On-Line Encyclopedia of Integer Sequences”.
- Weisstein, Eric W. “Markov Number.” From MathWorld–AWolfram.
- Castro, C., Mahecha, J. On nonlinear quantum mechanics, Brownian motion, Weyl geometry and Fisher information. Prog. Phys. 2006, 1, 38–45.
- Falciano, F.T., Novello, M., Salim, J.M.: Geometrizing relativistic quantum mechanics. Found. Phys. 2010, 40, 1885–1901.
- Bohm, David. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden Variables” I. Physical Review. 1952, 85, 166–179.
- Bohm, David. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden Variables”, II. Physical Review. 1952, 85, 180–193.
- Choi, J.R. Classical Limit of Quantum Mechanics for Damped Driven Oscillatory Systems: Quantum–Classical Correspondence. Front. Phys. 2021, 9, 670750. [CrossRef]
- Planck, M. Vorlesungen uber die Theorie der Wärmestralhung. 978- 0270103878. New York: Dover Publications, 1959.
- Bohr, N. The Theory of Spectra and Atomic Constitution. 978-1107669819. London: Cambridge University Press, 1922.
- N. Zettili. Quantum mechanics: Concepts and applications, John Wiley and Sons Ltd, England, 2001.

| Degree of Degeneracy | |||
|---|---|---|---|
| (1,1,1) | 3 | 113 | 1 |
| (2,1,1) | 6 | 226 | 3 |
| (2,2,1) | 9 | 339 | 3 |
| (3,1,1) | 11 | 414 | 3 |
| (2,2,2) | 12 | 452 | 1 |
| (3,1,2) | 14 | 527 | 6 |
| (3,2,2) | 17 | 640 | 3 |
| (4,1,1) | 18 | 677 | 3 |
| (4,1,2) | 21 | 790 | 6 |
| Degree of Degeneracy | |||
|---|---|---|---|
| (1,1,1) | 3 | 113 | 1 |
| (2,1,1) | 6 | 226 | 3 |
| (2,5,1) | 30 | 1130 | 6 |
| (13,5,1) | 195 | 7338 | 6 |
| (2,5,29) | 870 | 32741 | 6 |
| (13,34,1) | 1326 | 49902 | 6 |
| (2,169,29) | 29406 | 1106652 | 6 |
| (13,5,194) | 37830 | 1423677 | 6 |
| (433,5,29) | 18835 | 7088468 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
