Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films

Version 1 : Received: 20 June 2023 / Approved: 20 June 2023 / Online: 22 June 2023 (10:33:20 CEST)

A peer-reviewed article of this Preprint also exists.

Varlamov, P.; Semisalova, A.; Nguyen, A.D.; Farle, M.; Laplace, Y.; Raynaud, M.; Noel, O.; Vavassori, P.; Temnov, V. Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films. Magnetochemistry 2023, 9, 186, doi:10.3390/magnetochemistry9070186. Varlamov, P.; Semisalova, A.; Nguyen, A.D.; Farle, M.; Laplace, Y.; Raynaud, M.; Noel, O.; Vavassori, P.; Temnov, V. Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films. Magnetochemistry 2023, 9, 186, doi:10.3390/magnetochemistry9070186.

Abstract

Magnetic and morphological properties of equiatomic B2-ordered FeRh thin films irradiated with single high-intensity ultrashort laser pulses are investigated. The goal is to elucidate the effect of femtosecond laser ablation on the magnetic properties of FeRh. We employed Scanning Magneto-Optical Kerr Effect (S-MOKE) microscopy to examine the magnetic phase after laser processing, providing high spatial resolution and sensitivity. Our results revealed the appearance of a magneto-optical signal from the bottom of ablation craters, suggesting a transition from antiferromagnetic to ferromagnetic behavior. Fluence-resolved measurements clearly demonstrate that the ablation threshold coincides with the threshold of the antiferromagnet-to-ferromagnet phase transition. The existence of such magnetic phase transition was independently confirmed by temperature-dependent S-MOKE measurements using a CW laser as a localized heat source. Whereas the initial FeRh film displayed a reversible antiferromagnet-ferromagnet phase transition, the laser-ablated structures exhibited irreversible changes in their magnetic properties. This comprehensive analysis revealed the strong correlation between the femtosecond laser ablation process and the magnetic phase transformation in FeRh thin films.

Keywords

FeRh films; femtosecond laser pulse; laser ablation; S-MOKE microscopy; antiferromagnetism; ferromagnetism

Subject

Physical Sciences, Applied Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.