Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Digital Twin Development for the Airspace of the Future

Version 1 : Received: 13 June 2023 / Approved: 15 June 2023 / Online: 15 June 2023 (10:25:41 CEST)

A peer-reviewed article of this Preprint also exists.

Souanef, T.; Al-Rubaye, S.; Tsourdos, A.; Ayo, S.; Panagiotakopoulos, D. Digital Twin Development for the Airspace of the Future. Drones 2023, 7, 484. Souanef, T.; Al-Rubaye, S.; Tsourdos, A.; Ayo, S.; Panagiotakopoulos, D. Digital Twin Development for the Airspace of the Future. Drones 2023, 7, 484.

Abstract

The UK aviation industry is committed to achieving net zero emissions by 2050 through sustainable measures, and one of the key aspects of this effort is the implementation of Unmanned Traffic Management (UTM) systems. These UTM systems play a crucial role in enabling the safe and efficient integration of unmanned aerial vehicles (UAVs) into the airspace. As part of the Airspace of the Future (AoF) project, the development and implementation of UTM services have been prioritized. The paper aims to create an environment where routine drone services can operate safely and effectively. To facilitate this, a digital twin of the National Beyond Visual Line of Sight Experimentation Corridor has been created. This digital twin serves as a virtual replica of the corridor and allows for the synthetic testing of unmanned traffic management concepts. The implementation of the digital twin involves both simulated and hybrid flights with real drones. Simulated flights allow for the testing and refinement of UTM services in a controlled environment. Hybrid flights, on the other hand, involve the integration of real drones into the airspace to assess their performance and compatibility with the UTM systems. By leveraging the capabilities of UTM systems and utilizing the digital twin for testing, the AoF project aims to advance the development of safer and more efficient drone operations. Experimentation Corridor has been developed to simulate and test concepts related to managing unmanned traffic. The paper provides a detailed account of the implementation of the digital twin for the AoF project, including simulated and hybrid flights involving real drones.

Keywords

Digital Twin; Unmanned Traffic management; Unmanned Aerial Systems

Subject

Engineering, Aerospace Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.