Submitted:
09 June 2023
Posted:
09 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. HAIKU (IKU) pathway
3. Ubiquitin-proteasome pathway
4. G (Guanosine triphosphate) protein regulatory pathway
5. Mitogen-activated protein kinase (MAPK) pathway
6. Transcriptional regulators pathway
7. Phytohormone regulatory pathways
7.1. Auxin regulatory pathway
7.2. Brassinosteroids (BRs) regulatory pathway
7.3. Gibberellin (GA) regulatory pathway
7.4. Jasmonate (JA) regulatory pathway
7.5. Cytokinin (CK) regulatory pathway
7.6. Abscisic acid (ABA) regulatory pathway
8. MicroRNAs (miRNAs) regulatory pathway
9. Conclusion and prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sakamoto, T.; Matsuoka, M. Identifying and exploiting grain yield genes in rice. Current opinion in plant biology 2008, 11, 209–214. [Google Scholar] [CrossRef]
- Jiang, W.B.; Lin, W.H. Brassinosteroid functions in Arabidopsis seed development. Plant signaling & behavior 2013, 8. [Google Scholar] [CrossRef]
- Yu, A.; Wang, Z.; Zhang, Y.; Li, F.; Liu, A. Global Gene Expression of Seed Coat Tissues Reveals a Potential Mechanism of Regulating Seed Size Formation in Castor Bean. International journal of molecular sciences 2019, 20, 1282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yue, L.; Wu, X.; Liu, H.; Wang, W. Function of Small Peptides During Male-Female Crosstalk in Plants. Frontiers in plant science 2021, 12, 671196. [Google Scholar] [CrossRef]
- Chaudhury, A.M.; Koltunow, A.; Payne, T.; Luo, M.; Tucker, M.R.; Dennis, E.S.; Peacock, W.J. Control of early seed development. Annual review of cell and developmental biology 2001, 17, 677–699. [Google Scholar] [CrossRef]
- Li, J.; Nie, X.; Tan, J.L.; Berger, F. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 2013, 110, 15479–15484. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jiang, S.; Jiang, L.; Li, W.; Tang, Y.; He, W.; Wang, M.; Xing, J.; Cui, Y.; Lin, Q.; et al. Transcription factor OsSGL is a regulator of starch synthesis and grain quality in rice. Journal of experimental botany 2022, 73, 3417–3430. [Google Scholar] [CrossRef] [PubMed]
- Paolo, D.; Orozco-Arroyo, G.; Rotasperti, L.; Masiero, S.; Colombo, L.; de Folter, S.; Ambrose, B.A.; Caporali, E.; Ezquer, I.; Mizzotti, C. Genetic Interaction of SEEDSTICK, GORDITA and AUXIN RESPONSE FACTOR 2 during Seed Development. Genes 2021, 12, 1189. [Google Scholar] [CrossRef]
- Cao, J.; Li, G.; Qu, D.; Li, X.; Wang, Y. Into the Seed: Auxin Controls Seed Development and Grain Yield. International journal of molecular sciences 2020, 21, 1662. [Google Scholar] [CrossRef]
- Alam, I.; Batool, K.; Huang, Y.; Liu, J.; Ge, L. Developing Genetic Engineering Techniques for Control of Seed Size and Yield. International journal of molecular sciences 2022, 23, 3256. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Dai, Z.; Ma, F.; Miao, X.; Shi, Z. OsmiR396/growth regulating factor modulate rice grain size through direct regulation of embryo-specific miR408. Plant physiology 2021, 186, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Garcia, D.; Zhang, H.; Feng, K.; Chaudhury, A.; Berger, F.; Peacock, W.J.; Dennis, E.S.; Luo, M. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. The Plant journal : for cell and molecular biology 2010, 63, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Fatihi, A.; Zbierzak, A.M.; Dormann, P. Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds. Plant physiology 2013, 163, 973–985. [Google Scholar] [CrossRef]
- Luo, M.; Dennis, E.S.; Berger, F.; Peacock, W.J.; Chaudhury, A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 17531–17536. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, X.; Kang, X.; Zhao, X.; Zhang, X.; Ni, M. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. The Plant cell 2009, 21, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yang, S.; Wu, L.; Xin, Y.; Song, J.; Wang, L.; Pei, W.; Wu, M.; Yu, J.; Ma, X.; et al. Genome-Wide Analysis of the GW2-Like Genes in Gossypium and Functional Characterization of the Seed Size Effect of GhGW2-2D. Frontiers in plant science 2022, 13, 860922. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Park, S.W.; Kim, Y.J.; Koo, Y.J.; Song, J.T.; Seo, H.S. Grain width 2 (GW2) and its interacting proteins regulate seed development in rice (Oryza sativa L.). Botanical studies 2018, 59, 23. [Google Scholar] [CrossRef]
- Wang, J.L.; Tang, M.Q.; Chen, S.; Zheng, X.F.; Mo, H.X.; Li, S.J.; Wang, Z.; Zhu, K.M.; Ding, L.N.; Liu, S.Y.; et al. Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. Plant biotechnology journal 2017, 15, 1024–1033. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Hao, C.; Wang, K.; Wang, Y.; Qin, L.; An, D.; Li, T.; Zhang, X. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant biotechnology journal 2020, 18, 1330–1342. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, L.; Xu, R.; Cui, R.; Hao, J.; Sun, C.; Li, Y. Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana. The Plant cell 2015, 27, 620–632. [Google Scholar] [CrossRef]
- Yang, S.; Huang, L.; Song, J.; Liu, L.; Bian, Y.; Jia, B.; Wu, L.; Xin, Y.; Wu, M.; Zhang, J.; et al. Genome-Wide Analysis of DA1-Like Genes in Gossypium and Functional Characterization of GhDA1-1A Controlling Seed Size. Frontiers in plant science 2021, 12, 647091. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Li, N.; Dumenil, J.; Li, J.; Kamenski, A.; Bevan, M.W.; Gao, F.; Li, Y. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. The Plant cell 2013, 25, 3347–3359. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Chen, L.; Lu, Y.; Wu, Y.; Dumenil, J.; Zhu, Z.; Bevan, M.W.; Li, Y. The ubiquitin receptors DA1, DAR1, and DAR2 redundantly regulate endoreduplication by modulating the stability of TCP14/15 in Arabidopsis. The Plant cell 2015, 27, 649–662. [Google Scholar] [CrossRef]
- Du, L.; Li, N.; Chen, L.; Xu, Y.; Li, Y.; Zhang, Y.; Li, C.; Li, Y. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis. The Plant cell 2014, 26, 665–677. [Google Scholar] [CrossRef]
- Shi, C.; Ren, Y.; Liu, L.; Wang, F.; Zhang, H.; Tian, P.; Pan, T.; Wang, Y.; Jing, R.; Liu, T.; et al. Ubiquitin Specific Protease 15 Has an Important Role in Regulating Grain Width and Size in Rice. Plant physiology 2019, 180, 381–391. [Google Scholar] [CrossRef]
- Sun, S.; Wang, L.; Mao, H.; Shao, L.; Li, X.; Xiao, J.; Ouyang, Y.; Zhang, Q. A G-protein pathway determines grain size in rice. Nature communications 2018, 9, 851. [Google Scholar] [CrossRef]
- Wu, L.; Wang, X.; Yu, Z.; Cui, X.; Xu, Q. Simultaneous Improvement of Grain Yield and Quality through Manipulating Two Type C G Protein Gamma Subunits in Rice. International journal of molecular sciences 2022, 23, 1463. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wu, K.; Wang, B.; Liu, H.; Guo, S.; Guo, X.; Luo, W.; Sun, S.; Ouyang, Y.; Fu, X.; et al. The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. Molecular plant 2021, 14, 1699–1713. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.; Zhang, X.; Liu, Y.; Li, N.; Li, Y. Roles of the Arabidopsis G protein gamma subunit AGG3 and its rice homologs GS3 and DEP1 in seed and organ size control. Plant signaling & behavior 2012, 7, 1357–1359. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Zheng, L.; Chen, L.; Li, N.; Corke, F.; Lu, Y.; Fu, X.; Zhu, Z.; Bevan, M.W.; et al. The plant-specific G protein gamma subunit AGG3 influences organ size and shape in Arabidopsis thaliana. The New phytologist 2012, 194, 690–703. [Google Scholar] [CrossRef]
- Roy Choudhury, S.; Riesselman, A.J.; Pandey, S. Constitutive or seed-specific overexpression of Arabidopsis G-protein gamma subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa. Plant biotechnology journal 2014, 12, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Han, R.; Wu, K.; Zhang, J.; Ye, Y.; Wang, S.; Chen, J.; Pan, Y.; Li, Q.; Xu, X.; et al. G-protein betagamma subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature communications 2018, 9, 852. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Bai, X.; Cheng, N.; Xiao, J.; Li, X.; Xing, Y. Wide Grain 7 increases grain width by enhancing H3K4me3 enrichment in the OsMADS1 promoter in rice (Oryza sativa L.). The Plant journal : for cell and molecular biology 2020, 102, 517–528. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, M.; Zhou, Y.; Wang, Y.; Shen, J.; Chen, H.; Zhang, L.; Lu, B.; Liang, G.; Liang, J. The Rice G Protein gamma Subunit DEP1/qPE9-1 Positively Regulates Grain-Filling Process by Increasing Auxin and Cytokinin Content in Rice Grains. Rice 2019, 12, 91. [Google Scholar] [CrossRef]
- Utsunomiya, Y.; Samejima, C.; Takayanagi, Y.; Izawa, Y.; Yoshida, T.; Sawada, Y.; Fujisawa, Y.; Kato, H.; Iwasaki, Y. Suppression of the rice heterotrimeric G protein beta-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. The Plant journal : for cell and molecular biology 2011, 67, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Yang, Z.; Zhang, D.; Wang, Y.; Xu, M.; Zhou, L.; Wang, J.; Wu, S.; Yao, Y.; Du, X.; et al. Mutation of RGG2, which encodes a type B heterotrimeric G protein gamma subunit, increases grain size and yield production in rice. Plant biotechnology journal 2019, 17, 650–664. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, B.; Duan, L.; Zhu, H.; Zhang, Z. MtMAPKK4 is an essential gene for growth and reproduction of Medicago truncatula. Physiologia plantarum 2017, 159, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Osuna, A.; Calatrava, V.; Galvan, A.; Fernandez, E.; Llamas, A. Identification of the MAPK Cascade and its Relationship with Nitrogen Metabolism in the Green Alga Chlamydomonas reinhardtii. International journal of molecular sciences 2020, 21, 3417. [Google Scholar] [CrossRef]
- Xi, X.; Hu, Z.; Nie, X.; Meng, M.; Xu, H.; Li, J. Cross Inhibition of MPK10 and WRKY10 Participating in the Growth of Endosperm in Arabidopsis thaliana. Frontiers in plant science 2021, 12, 640346. [Google Scholar] [CrossRef]
- Wu, X.; Cai, X.; Zhang, B.; Wu, S.; Wang, R.; Li, N.; Li, Y.; Sun, Y.; Tang, W. ERECTA regulates seed size independently of its intracellular domain via MAPK-DA1-UBP15 signaling. The Plant cell 2022, 34, 3773–3789. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, L.; Zhao, Y.; Guo, H.; Li, J.; Rashid, M.A.R.; Lu, C.; Zhou, W.; Yang, X.; Liang, Y.; et al. Natural Variation in OsMKK3 Contributes to Grain Size and Chalkiness in Rice. Frontiers in plant science 2021, 12, 784037. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Mei, E.; Tian, X.; He, M.; Tang, J.; Xu, M.; Liu, J.; Song, L.; Li, X.; Wang, Z.; et al. OsMKKK70 regulates grain size and leaf angle in rice through the OsMKK4-OsMAPK6-OsWRKY53 signaling pathway. Journal of integrative plant biology 2021, 63, 2043–2057. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hua, L.; Dong, S.; Chen, H.; Zhu, X.; Jiang, J.; Zhang, F.; Li, Y.; Fang, X.; Chen, F. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. The Plant journal : for cell and molecular biology 2015, 84, 672–681. [Google Scholar] [CrossRef]
- Xu, R.; Duan, P.; Yu, H.; Zhou, Z.; Zhang, B.; Wang, R.; Li, J.; Zhang, G.; Zhuang, S.; Lyu, J.; et al. Control of Grain Size and Weight by the OsMKKK10-OsMKK4-OsMAPK6 Signaling Pathway in Rice. Molecular plant 2018, 11, 860–873. [Google Scholar] [CrossRef]
- Guo, T.; Chen, K.; Dong, N.Q.; Shi, C.L.; Ye, W.W.; Gao, J.P.; Shan, J.X.; Lin, H.X. GRAIN SIZE AND NUMBER1 Negatively Regulates the OsMKKK10-OsMKK4-OsMPK6 Cascade to Coordinate the Trade-off between Grain Number per Panicle and Grain Size in Rice. The Plant cell 2018, 30, 871–888. [Google Scholar] [CrossRef]
- Xiao, W.; Hu, S.; Zou, X.; Cai, R.; Liao, R.; Lin, X.; Yao, R.; Guo, X. Lectin receptor-like kinase LecRK-VIII.2 is a missing link in MAPK signaling-mediated yield control. Plant physiology 2021, 187, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Majeed, U.; Hou, J.; Hao, C.; Zhang, X. TaNAC020 homoeologous genes are associated with higher thousand kernel weight and kernel length in Chinese wheat. Frontiers in genetics 2022, 13, 956921. [Google Scholar] [CrossRef]
- Li, J.; Xie, L.; Tian, X.; Liu, S.; Xu, D.; Jin, H.; Song, J.; Dong, Y.; Zhao, D.; Li, G.; et al. TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat. The Plant journal : for cell and molecular biology 2021, 108, 829–840. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, W.; Dong, J.; Li, J.; Yang, F.; Wu, Z.; Zhou, H.; Wang, W.; Zhuang, C. Overexpression of miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice. Journal of experimental botany 2018, 69, 1533–1543. [Google Scholar] [CrossRef]
- Jin, S.K.; Zhang, M.Q.; Leng, Y.J.; Xu, L.N.; Jia, S.W.; Wang, S.L.; Song, T.; Wang, R.A.; Yang, Q.Q.; Tao, T.; et al. OsNAC129 Regulates Seed Development and Plant Growth and Participates in the Brassinosteroid Signaling Pathway. Frontiers in plant science 2022, 13, 905148. [Google Scholar] [CrossRef]
- Yang, F.; Liu, G.; Wu, Z.; Zhang, D.; Zhang, Y.; You, M.; Li, B.; Zhang, X.; Liang, R. Cloning and Functional Analysis of TaWRI1Ls, the Key Genes for Grain Fatty Acid Synthesis in Bread Wheat. International journal of molecular sciences 2022, 23, 5293. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.Y.; Nam, K.H. RAV1 Negatively Regulates Seed Development by Directly Repressing MINI3 and IKU2 in Arabidopsis. Molecules and cells 2018, 41, 1072–1080. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ma, X.; Xia, H.; Wang, L.; Chen, S.; Xu, K.; Yang, F.; Zou, Y.; Wang, Y.; Zhu, J.; et al. Natural variation of Alfin-like family affects seed size and drought tolerance in rice. The Plant journal : for cell and molecular biology 2022, 112, 1176–1193. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, S.H.; Shin, D.M.; Kim, S.H. ATBS1-INTERACTING FACTOR 2 Negatively Modulates Pollen Production and Seed Formation in Arabidopsis. Frontiers in plant science 2021, 12, 704958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, W.; Du, D.; Pu, L.; Zhang, C. Overexpression of a maize BR transcription factor ZmBZR1 in Arabidopsis enlarges organ and seed size of the transgenic plants. Plant science : an international journal of experimental plant biology 2020, 292, 110378. [Google Scholar] [CrossRef]
- Sun, F.; Ding, L.; Feng, W.; Cao, Y.; Lu, F.; Yang, Q.; Li, W.; Lu, Y.; Shabek, N.; Fu, F.; et al. Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. Journal of experimental botany 2021, 72, 1714–1726. [Google Scholar] [CrossRef]
- Nutan, K.K.; Singla-Pareek, S.L.; Pareek, A. The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. Journal of experimental botany 2020, 71, 684–698. [Google Scholar] [CrossRef]
- Song, G.; Li, X.; Munir, R.; Khan, A.R.; Azhar, W.; Yasin, M.U.; Jiang, Q.; Bancroft, I.; Gan, Y. The WRKY6 transcription factor affects seed oil accumulation and alters fatty acid compositions in Arabidopsis thaliana. Physiologia plantarum 2020, 169, 612–624. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, W.; Shi, J.; Xu, J.; Zhang, D. MYB56 encoding a R2R3 MYB transcription factor regulates seed size in Arabidopsis thaliana. Journal of integrative plant biology 2013, 55, 1166–1178. [Google Scholar] [CrossRef]
- Yu, Y.T.; Wu, Z.; Lu, K.; Bi, C.; Liang, S.; Wang, X.F.; Zhang, D.P. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. Plant molecular biology 2016, 90, 267–279. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, L.; Ma, J.; Zhou, B.; Han, X.; Cheng, J.; Lu, X.; Fan, Z.; Li, Y.; Cao, Y. Transcriptomic Variations and Network Hubs Controlling Seed Size and Weight During Maize Seed Development. Frontiers in plant science 2022, 13, 828923. [Google Scholar] [CrossRef]
- He, Z.; Zeng, J.; Ren, Y.; Chen, D.; Li, W.; Gao, F.; Cao, Y.; Luo, T.; Yuan, G.; Wu, X.; et al. OsGIF1 Positively Regulates the Sizes of Stems, Leaves, and Grains in Rice. Frontiers in plant science 2017, 8, 1730. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gao, F.; Xie, K.; Zeng, X.; Cao, Y.; Zeng, J.; He, Z.; Ren, Y.; Li, W.; Deng, Q.; et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant biotechnology journal 2016, 14, 2134–2146. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; E, Z.; Zhang, D.; Yun, Q.; Zhou, Y.; Niu, B.; Chen, C. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice. Plant physiology 2021, 185, 934–950. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Li, Y.; Wang, Z.; Tao, S.; Sun, G.; Kong, X.; Wang, K.; Ye, X.; Liu, S.; Geng, S.; et al. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. The Plant journal : for cell and molecular biology 2021, 108, 1754–1767. [Google Scholar] [CrossRef]
- Guo, L.; Ma, M.; Wu, L.; Zhou, M.; Li, M.; Wu, B.; Li, L.; Liu, X.; Jing, R.; Chen, W.; et al. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant biotechnology journal 2022, 20, 168–182. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Wang, N.; Jiang, X.; Mao, H.; Zhu, C.; Wen, F.; Wang, X.; Lu, Z.; Yue, G.; et al. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas. Scientific reports 2017, 7, 40844. [Google Scholar] [CrossRef]
- Sun, H.; Xu, H.; Li, B.; Shang, Y.; Wei, M.; Zhang, S.; Zhao, C.; Qin, R.; Cui, F.; Wu, Y. The brassinosteroid biosynthesis gene, ZmD11, increases seed size and quality in rice and maize. Plant physiology and biochemistry : PPB 2021, 160, 281–293. [Google Scholar] [CrossRef]
- Zhu, X.; Liang, W.; Cui, X.; Chen, M.; Yin, C.; Luo, Z.; Zhu, J.; Lucas, W.J.; Wang, Z.; Zhang, D. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. The Plant journal : for cell and molecular biology 2015, 82, 570–581. [Google Scholar] [CrossRef]
- Wu, Y.; Fu, Y.; Zhao, S.; Gu, P.; Zhu, Z.; Sun, C.; Tan, L. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant biotechnology journal 2016, 14, 377–386. [Google Scholar] [CrossRef]
- Xu, H.; Sun, H.; Dong, J.; Ma, C.; Li, J.; Li, Z.; Wang, Y.; Ji, J.; Hu, X.; Wu, M.; et al. The brassinosteroid biosynthesis gene TaD11-2A controls grain size and its elite haplotype improves wheat grain yields. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 2022, 135, 2907–2923. [Google Scholar] [CrossRef] [PubMed]
- Segami, S.; Kono, I.; Ando, T.; Yano, M.; Kitano, H.; Miura, K.; Iwasaki, Y. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice. Rice 2012, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Segami, S.; Takehara, K.; Yamamoto, T.; Kido, S.; Kondo, S.; Iwasaki, Y.; Miura, K. Overexpression of SRS5 improves grain size of brassinosteroid-related dwarf mutants in rice (Oryza sativa L.). Breeding science 2017, 67, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.B.; Huang, H.Y.; Hu, Y.W.; Zhu, S.W.; Wang, Z.Y.; Lin, W.H. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant physiology 2013, 162, 1965–1977. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; He, M.; Mei, E.; Zhang, B.; Tang, J.; Xu, M.; Liu, J.; Li, X.; Wang, Z.; Tang, W.; et al. WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size. The Plant cell 2021, 33, 2753–2775. [Google Scholar] [CrossRef]
- Yu, S.; Wang, J.W. The Crosstalk between MicroRNAs and Gibberellin Signaling in Plants. Plant & cell physiology 2020, 61, 1880–1890. [Google Scholar] [CrossRef]
- Zhou, B.; Lin, J.Z.; Peng, W.S.; Peng, D.; Zhuo, Y.H.; Zhu, D.F.; Huang, X.Q.; Tang, D.Y.; Guo, M.; He, R.Q.; Zhang, J.H.; Li, X.S.; Zhao, X.Y.; Liu, X.M. Dwarfism in Brassica napus L. induced by the over-expression of a gibberellin 2-oxidase gene from Arabidopsis thaliana. Molecular breeding 2012, 29, 115–127. [Google Scholar] [CrossRef]
- Roxrud, I.; Lid, S.E.; Fletcher, J.C.; Schmidt, E.D.; Opsahl-Sorteberg, H.G. GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant & cell physiology 2007, 48, 471–483. [Google Scholar] [CrossRef]
- Li, Q.; Li, L.; Liu, Y.; Lv, Q.; Zhang, H.; Zhu, J.; Li, X. Influence of TaGW2-6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant science : an international journal of experimental plant biology 2017, 263, 226–235. [Google Scholar] [CrossRef]
- Hu, S.; Yang, H.; Gao, H.; Yan, J.; Xie, D. Control of seed size by jasmonate. Science China. Life sciences 2021, 64, 1215–1226. [Google Scholar] [CrossRef]
- Mehra, P.; Pandey, B.K.; Verma, L.; Prusty, A.; Singh, A.P.; Sharma, S.; Malik, N.; Bennett, M.J.; Parida, S.K.; Giri, J.; et al. OsJAZ11 regulates spikelet and seed development in rice. Plant direct 2022, 6, e401. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Major, I.T.; Kapali, G.; Howe, G.A. MYC transcription factors coordinate tryptophan-dependent defence responses and compromise seed yield in Arabidopsis. The New phytologist 2022, 236, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, J.; Yu, G.; Lu, X.; Mei, W.; Deng, H.; Zhang, G.; Chen, G.; Chu, C.; Tong, H.; et al. Endoplasmic Reticulum-Localized PURINE PERMEASE1 Regulates Plant Height and Grain Weight by Modulating Cytokinin Distribution in Rice. Frontiers in plant science 2020, 11, 618560. [Google Scholar] [CrossRef]
- Joshi, R.; Sahoo, K.K.; Tripathi, A.K.; Kumar, R.; Gupta, B.K.; Pareek, A.; Singla-Pareek, S.L. Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant, cell & environment 2018, 41, 936–946. [Google Scholar] [CrossRef]
- Jameson, P.E.; Song, J. Cytokinin: a key driver of seed yield. Journal of experimental botany 2016, 67, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Shim, Y.; Gi, E.; An, G.; Paek, N.C. Mutation of ONAC096 Enhances Grain Yield by Increasing Panicle Number and Delaying Leaf Senescence during Grain Filling in Rice. International journal of molecular sciences 2019, 20, 5241. [Google Scholar] [CrossRef]
- Yeh, S.Y.; Chen, H.W.; Ng, C.Y.; Lin, C.Y.; Tseng, T.H.; Li, W.H.; Ku, M.S. Down-Regulation of Cytokinin Oxidase 2 Expression Increases Tiller Number and Improves Rice Yield. Rice 2015, 8, 36. [Google Scholar] [CrossRef]
- Zhao, J.; Bai, W.; Zeng, Q.; Song, S.; Zhang, M.; Li, X.; Hou, L.; Xiao, Y.; Luo, M.; Li, D.; et al. Moderately enhancing cytokinin level by down-regulation of GhCKX expression in cotton concurrently increases fiber and seed yield. Molecular breeding : new strategies in plant improvement 2015, 35, 60. [Google Scholar] [CrossRef]
- Zhai, L.; Xie, L.; Xu, J.; Xu, B.; Dong, J.; Zhang, X. Study on exogenous application of thidiazuron on seed size of Brassica napus L. Frontiers in plant science 2022, 13, 998698. [Google Scholar] [CrossRef]
- Li, W.; Nguyen, K.H.; Ha, C.V.; Watanabe, Y.; Tran, L.P. Crosstalk between the cytokinin and MAX2 signaling pathways in growth and callus formation of Arabidopsis thaliana. Biochemical and biophysical research communications 2019, 511, 300–306. [Google Scholar] [CrossRef]
- Bartrina, I.; Jensen, H.; Novak, O.; Strnad, M.; Werner, T.; Schmulling, T. Gain-of-Function Mutants of the Cytokinin Receptors AHK2 and AHK3 Regulate Plant Organ Size, Flowering Time and Plant Longevity. Plant physiology 2017, 173, 1783–1797. [Google Scholar] [CrossRef]
- Riefler, M.; Novak, O.; Strnad, M.; Schmulling, T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant cell 2006, 18, 40–54. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, D.; Zhang, G.; Gao, S.; Liu, L.; Xu, F.; Che, R.; Wang, Y.; Tong, H.; Chu, C. Big Grain3, encoding a purine permease, regulates grain size via modulating cytokinin transport in rice. Journal of integrative plant biology 2019, 61, 581–597. [Google Scholar] [CrossRef]
- Qi, Z.; Xiong, L. Characterization of a purine permease family gene OsPUP7 involved in growth and development control in rice. Journal of integrative plant biology 2013, 55, 1119–1135. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Tian, Q.; Deng, P.; Zhang, W.; Jing, W. The rice aldehyde oxidase OsAO3 gene regulates plant growth, grain yield, and drought tolerance by participating in ABA biosynthesis. Biochemical and biophysical research communications 2021, 548, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.; Zhang, J.; Hao, L.; Hua, J.; Duan, L.; Zhang, M.; Li, Z. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant biotechnology journal 2013, 11, 747–758. [Google Scholar] [CrossRef]
- Kim, H.; Lee, K.; Hwang, H.; Bhatnagar, N.; Kim, D.Y.; Yoon, I.S.; Byun, M.O.; Kim, S.T.; Jung, K.H.; Kim, B.G. Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. Journal of experimental botany 2014, 65, 453–464. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Zhao, X.Y.; Shao, X.X.; Wang, F.; Zhou, C.; Liu, Y.G.; Zhang, Y.; Zhang, X.S. Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. The Plant cell 2014, 26, 1053–1068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zheng, H.; Jin, L.; Xing, L.; Zou, J.; Zhang, L.; Liu, C.; Chu, J.; Xu, M.; Wang, L. miR169o and ZmNF-YA13 act in concert to coordinate the expression of ZmYUC1 that determines seed size and weight in maize kernels. The New phytologist 2022, 235, 2270–2284. [Google Scholar] [CrossRef]
- Sun, W.; Xu, X.H.; Li, Y.; Xie, L.; He, Y.; Li, W.; Lu, X.; Sun, H.; Xie, X. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice. The New phytologist 2020, 226, 823–837. [Google Scholar] [CrossRef]
- Yan, Y.; Wei, M.; Li, Y.; Tao, H.; Wu, H.; Chen, Z.; Li, C.; Xu, J.H. MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.). Plant science : an international journal of experimental plant biology 2021, 302, 110728. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wen, H.; Teotia, S.; Du, Y.; Zhang, J.; Li, J.; Sun, H.; Tang, G.; Peng, T.; Zhao, Q. Suppression of microRNA159 impacts multiple agronomic traits in rice (Oryza sativa L.). BMC plant biology 2017, 17, 215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Yan, J.; Gou, F.; Mao, Y.; Tang, G.; Botella, J.R.; Zhu, J.K. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proceedings of the National Academy of Sciences of the United States of America 2017, 114, 5277–5282. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, C.; Yang, T.; Zhao, L.; Chen, J.; Zhang, N.; Ren, Y.; Tang, G.; Cui, D.; Chen, F. High-throughput sequencing revealed that microRNAs were involved in the development of superior and inferior grains in bread wheat. Scientific reports 2018, 8, 13854. [Google Scholar] [CrossRef] [PubMed]

| Pathway | Protein | Species | Phenotype of loss-of-function | Phenotype of gain-of-function | Reference |
|---|---|---|---|---|---|
| IKU pathway | IKU1 | Arabidopsis thaliana | Small seeds | —— | [12] |
| IKU2 | Arabidopsis thaliana | —— | Big seeds | [13] | |
| MINI3 | Arabidopsis thaliana | Small seeds | —— | [14] | |
| SHB1 | Arabidopsis thaliana | Small seeds | Big seeds | [15] | |
| Ubiquitin-proteasome pathway | GhGW2-2D | Gossypium spp. | —— | Small seeds | [16] |
| AtDA1 | Arabidopsis thaliana | Big seeds | —— | [18] | |
| BnDA1 | Brassica napus | Big seeds | —— | [18] | |
| TaDA1 | Triticum aestivum | Big seeds | Small seeds | [19] | |
| SOD7 | Arabidopsis thaliana | —— | Small seeds | [20] | |
| GhDA1-1A | Gossypium spp. | —— | Big seeds | [21] | |
| DA2 | Arabidopsis thaliana | Big seeds | Small seeds | [22] | |
| UBP15 | Arabidopsis thaliana | Small seeds | Big seeds | [24] | |
| OsUBP15 | Oryza sativa | Small seeds | —— | [25] | |
| GW2 | Oryza sativa | —— | Small seeds | [25] | |
| G protein regulatory pathway | DEP1 | Oryza sativa | —— | Big seeds | [26] |
| GGC2 | Oryza sativa | —— | Big seeds | [26] | |
| GS3 | Oryza sativa | Big seeds | —— | [26] | |
| CGL1 | Oryza sativa | —— | Big seeds | [28] | |
| AGG3 | Arabidopsis thaliana | Big seeds | —— | [30] | |
| RGG2 | Oryza sativa | —— | Small seeds | [36] | |
| MAPK pathway | MPK10 | Arabidopsis thaliana | Big seeds | —— | [39] |
| OsMKK3 | Oryza sativa | —— | Longer seeds | [41] | |
| OsMKKK70 | Oryza sativa | —— | Longer seeds | [42] | |
| OsMKKK10 | Oryza sativa | Small seeds | Big seeds | [44] | |
| OsMKK4 | Oryza sativa | —— | Big seeds | [44] | |
| OsMKP1 | Oryza sativa | Big seeds | Small seeds | [45] | |
| Transcriptional regulators pathway | TaNAC100 | Triticum aestivum | —— | Big seeds | [48] |
| OsNAC129 | Oryza sativa | Big seeds | Small seeds | [50] | |
| TaWRI1L2 | Triticum aestivum | Small seeds | —— | [51] | |
| RAV1 | Arabidopsis thaliana | —— | Small seeds | [52] | |
| OsAL7.1 | Oryza sativa | Big seeds | —— | [53] | |
| OsAL11 | Oryza sativa | Big seeds | —— | [53] | |
| AIF2 | Arabidopsis thaliana | —— | Fewer seeds | [54] | |
| ZmBZR1 | Arabidopsis thaliana | —— | Big seeds | [55] | |
| ZmBES1/BZR1-5 | Arabidopsis thaliana | —— | Big seeds | [56] | |
| OsGATA8 | Oryza sativa | —— | Big seeds | [57] | |
| WRKY6 | Arabidopsis thaliana | Big seeds | —— | [58] | |
| MYB56 | Arabidopsis thaliana | Small seeds | Big seeds | [59] | |
| MYB37 | Arabidopsis thaliana | —— | Higher seed yield | [60] | |
| ZmARF12 | Zea mays | Big seeds | —— | [61] | |
| GIF1 | Oryza sativa | Small seeds | Big seeds | [62] | |
| OsGRF4 | Oryza sativa | Big seeds | —— | [63] | |
| Auxin regulatory pathway | OSYUC11 | Oryza sativa | Small seeds | —— | [64] |
| TaIAA21 | Triticum aestivum | Big seeds | —— | [65] | |
| TtARF25 | Triticum turgidum | Small seeds | —— | [65] | |
| TtERF3 | Triticum turgidum | Small seeds | —— | [65] | |
| TaCYP78A5 | Triticum aestivum | —— | Big seeds | [66] | |
| JcARF19 | Jatropha curcas | —— | Big seeds | [67] | |
| BRs regulatory pathway | ZmD11 | Zea mays | —— | Big seeds | [68] |
| D11 | Oryza sativa | Small seeds | Higher grain yield | [69] | |
| OsBZR1 | Oryza sativa | Small seeds | Higher grain yield | [69] | |
| CPB1 | Oryza sativa | —— | Big seeds | [70] | |
| TaD11-2A | Triticum aestivum | Small seeds | Big seeds | [71] | |
| D61-2 | Oryza sativa | Short seeds | —— | [72] | |
| SRS5 | Oryza sativa | —— | Big seeds | [73] | |
| DET2 | Arabidopsis thaliana | Small seeds | —— | [74] | |
| WRKY53 | Oryza sativa | —— | Big seeds | [75] | |
| GA regulatory pathway | GA2ox8 | Arabidopsis thaliana | —— | Higher seed yield | [77] |
| GASA4 | Arabidopsis thaliana | Small seeds | Big seeds | [78] | |
| JA regulatory pathway | COI1 | Arabidopsis thaliana | Big seeds | —— | [80] |
| MYC2 | Arabidopsis thaliana | Big seeds | —— | [80] | |
| MED25 | Arabidopsis thaliana | Big seeds | —— | [80] | |
| JAZ6 | Arabidopsis thaliana | Small seeds | —— | [80] | |
| OsJAZ11 | Oryza sativa | —— | Big seeds | [81] | |
| CK regulatory pathway | OsCKX2 | Oryza sativa | More grains | —— | [87] |
| AHK2/3/4 | Arabidopsis thaliana | Big seeds | Higher seed yield | [90,91,92] | |
| OsPUP1 | Oryza sativa | —— | Reduced grain weight and number | [83] | |
| OsPUP4 | Oryza sativa | —— | Big seeds | [93] | |
| OsPUP7 | Oryza sativa | Big seeds | —— | [94] | |
| ABA regulatory pathway | LOS5/ABA3 | Arabidopsis thaliana | —— | Higher seed yield | [96] |
| OsAO3 | Oryza sativa | Higher yield | Reduced grain yield | [95] | |
| OsPYL/RCAR5 | Oryza sativa | —— | Reduced grain yield | [97] | |
| ABA2 | Arabidopsis thaliana | Big seeds | —— | [98] | |
| ABI5 | Arabidopsis thaliana | Big seeds | —— | [98] | |
| miRNA regulatory pathway | zma-miR169o | Zea mays | Small seeds | Big seeds | [99] |
| OsmiR530 | Oryza sativa | Higher yield | Small seeds | [100] | |
| miR529a | Oryza sativa | Narrower grain | Narrower and longer grain | [101] | |
| miR159 | Oryza sativa | Small seeds | —— | [102] | |
| miR398 | Oryza sativa | Small seeds | Big seeds | [103] | |
| miR160 | Triticum aestivum | Small seeds | —— | [104] | |
| miR165/166 | Triticum aestivum | Reduced seed number | —— | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).