Submitted:
05 June 2023
Posted:
06 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Structural Design and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdulkarim, Y.I.; Mohanty, A.; Acharya, O.P.; Bhargav, A.; Khan, M.S.; Mohapatra, S.K.; Muhammadsharif, F.F; Dong, J. A Review on Metamaterial Absorbers: Microwave to Optical. Front. in Phys. 2022, 10, 893791. [Google Scholar] [CrossRef]
- Bregar, V.B.; Znidarsic, A.; Lisjak, D.; Drofenik, M. Development and Characterisation of an Electromagnetic Absorber. Mat. in Teh. 2005, 39, 89–93. [Google Scholar]
- Li, S.; Qiao, X.; Chen, J. Nano-Composite Electromagnetic Wave Absorbers. J. Astr. 2006, 27, 317–322. [Google Scholar]
- Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H. Multifunctional Organic–Inorganic Hybrid Aerogel for Self-Cleaning, Heat-Insulating, and Highly Efficient Microwave Absorbing Material. Adv. Funct. Mater. 2018, 29, 1807624. [Google Scholar] [CrossRef]
- Landy, N. I.; Sajuyigbe, S.; Mock, J. J.; Smith, D. R.; Padilla W., J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Hai, L. D; Qui, V.D; Tung, N.H.; Huynh, T.V; Dung, N.D; Binh, N.T; Tuyen, L.D.; Lam, V.D. Conductive polymer for ultra-broadband, wide-angle, and polarization-insensitive metamaterial perfect absorber. Opt. Expr. 2018, 26(25), 33253. [Google Scholar] [CrossRef]
- Akselrod, G.M.; Huang, J.; Thang, B.H.; Bowen, P.T.; Su, L.; Smith, D.R.; Mikkelsen, M.H. Large-Area Metasurface Perfect Absorbers from Visible to Near-Infrared. Adv. Mater. 2015, 27, 8028–8034. [Google Scholar] [CrossRef]
- Park, J.H.; Park, C.; Lee, K.S.; Suh, S.J. Effect of NaOH and precursor concentration on size and magnetic properties of FeCo nanoparticles synthesized using the polyol method. AIP Adv. 2020, 10(11), 115220. [Google Scholar] [CrossRef]
- Liu, X.G.; Geng, D.Y.; Meng, H.; Li, B.; Zhang, Q.; Kang, D.J.; Zhang, Z.D. Electromagnetic-wave-absorption properties of wire-like structures self-assembled by FeCo nanocapsules. J. Phys. D. Appl. Phys. 2008, 41, 175001. [Google Scholar] [CrossRef]
- Cheng, Y.; Ji, G.; Li, Z.; Lv, H; Liu, W.; Zhao, Y.; Cao, J.; Du, Y. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: Effect of Fe/Co atomic ratio. J. Alloys Compd. 2017, 704, 289–295. [Google Scholar] [CrossRef]
- Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M. Temperature Dependent Microwave Attenuation Behavior for Carbon-Nanotube/Silica Composites. Carbon. 2013, 65, 124–139. [Google Scholar] [CrossRef]
- Kim, S. H.; Park, Y. G.; Kim, S. S. Double-Layered Microwave Absorbers Composed of Ferrite and Carbon Fiber Composite Laminates. Phys. Stat. Sol. C. 2007, 4, 4602–4605. [Google Scholar] [CrossRef]
- Chen, H.; Ma, W.; Huang, Z.; Zhang, Y.; Huang, Y.; Chen, Y. Graphene-Based Materials toward Microwave and Terahertz Absorbing Stealth Technologies. Adv. Opt. Mat. 2019, 7, 1801318. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, H.; Huang, Y.; Ge, Z.; Zhou, Y.; Yang, Y.; Xiao, P.; Liang, J.; Zhang, T.; Qian, S.; Li, G.; Chen, Y. Ultra-Broadband Wide-Angle Terahertz absorption properties of 3D graphene foam. Adv. Funct. Mat. 2018, 28, 1704363. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Chen, H. H.; Huang, Z. Y.; Yang, Y.; Xiao, P. S.; Zhou, Y.; Chen, Y. S. Composition and Structure Control of Ultralight Graphene Foam for High-Performance Microwave Absorption. Carbon. 2016, 105, 438–447. [Google Scholar] [CrossRef]
- Han, Z.; Li, D.; Wang, H.; Liu, X.G.; Li, J.; Geng, D.Y.; Zhang, Z.D. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules, Appl. Phys. Lett. 2009, 95, 16–19. [Google Scholar]
- Han, Z.; Li, D.; Wang, X.W.; Zhang, Z.D. Microwave response of FeCo/carbon nanotubes composites. J. Appl. Phys. 2011, 109, 2009–2012. [Google Scholar] [CrossRef]
- Jiang, J.J.; Li, X.J.; Han, Z.; Li, D.; Wang, Z.H.; Geng, D.Y.; Ma, S.; Liu, W.; Zhang, Z.D. Disorder-modulated microwave absorption properties of carbon-coated FeCo nanocapsules. J. Appl. Phys. 2014, 115, 2012–2015. [Google Scholar] [CrossRef]
- Lv, H.; Ji, G.; Zhang, H.; Li, M.; Zuo, Z.; Zhao, Y.; Zhang, B.; Tang, D.; Du, Y. CoxFey@C Composites with Tunable Atomic Ratios for Excellent Electromagnetic Absorption Properties. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Su, X.G.; Wang, J.; Zhang, X.X.; Huo, S.Q.; Dai, W.; Zhang, B. Synergistic effect of polyhedral iron-cobalt alloys and graphite nanosheets with excellent microwave absorption performance. J. Alloys Compd. 2020, 829, 154426. [Google Scholar] [CrossRef]
- CST Microwave Studio 2019, License ID: 52856-1. Dassault Systemes. Available online: http://www.cst.com (accessed on 15 June 2021).
- Bohren, C. F.; Huffman, D. R. Absorption and scattering of light by small particles, John Wiley & Sons, New York, 2008.
- Wang, Q.; Zhang, F.; Xiong, Y.J.; Wang, Y.; Tang, X.Z; Jiang, C. Abrahams, I.; Huang X Z. Dual-band binary metamaterial absorber based on low-permittivity all-dielectric resonance surface. J. Electron. Mat. 2019, 48, 787–793. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, C.; Wang, Q.; Zhao, Z.; Wang, Y.; Du, Z.; Wang, C.; Huang, X. A multi-band closed-cell metamaterial absorber based on a low-permittivity all-dielectric structure. Appl. Phys. Express, 2020, 13, 084001. [Google Scholar] [CrossRef]
- Guo, M.Ch.; Wang, X.K.; Zhuang, H.Y.; Tang, D.M.; Zhang, B.S.; Yang, Y. 3D printed low-permittivity all-dielectric metamaterial for dual-band microwave absorption based on surface lattice resonances. Phys. Scrip. 2022, 97, 075504. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Tian, X.; Fang, J.K.; Shi, Y.P.; Shi, S.N.; Zhang, S.; Song, J.M.; Li, M.P.; Liu, X.Y.; Wang, X.D.; Yang, F.H. Independently tunable all-dielectric synthetic multi-spectral metamaterials based on Mie resonance. RSC Adv. 2022, 12, 20765–20770. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Kang, L.; Du, B.; Zhao, H.; Xie, Q.; Huang, X.; Li, B.; Zhou, J.; Li, L. Experimental Demonstration of Isotropic Negative Permeability in a Three-Dimensional Dielectric Composite. Phys. Rev. Lett. 2008, 101, 027402. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Wang, X.; Zhou, X.; Shi, G.; Xu, G.; Yu, J.; Guan, Y.; Zhang, Y.; Li, D.; Choi, C. Excellent microwave absorption of FeCo/ZnO composites with defects in ZnO for regulating the impedance matching. J. Alloys Compd. 2018, 769, 512–520. [Google Scholar] [CrossRef]
- Jiang, Y.; Fu, X.; Zhang, Z.; Du, W.; Xie, P.; Cheng, C.; Fan, R. Enhanced microwave absorption properties of Fe3C/C nanofibers prepared by electrospinning. J. Alloys Compd. 2019, 804, 305–313. [Google Scholar] [CrossRef]
- Wei, S.; Wang, X.; Zheng, Y.; Chen, T.; Zhou, C.; Chen, S.; Liu, J. acile preparation of snowflake-like MnO2@NiCo2O4 composites for highly efficient electromagnetic wave absorption. Chem. Eur. J. 2019, 25, 7695–7701. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
