Submitted:
31 May 2023
Posted:
01 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Selection of Patients in the Prospective Clinical Studies
2.2. Radiation-Induced CD8 T-Lymphocyte Apoptosis (RILA) Procedure
2.3. Chromosome and DNA Damage Foci Assays Protocol
2.4. Objectives and End-Points
2.5. Sample Size Calculation
2.6. Statistical Analysis
3. Results
3.1. Distributions of Biomarkers within FAST and CHHiP Patients
3.2. Associations between Biomarkers and Clinical Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Al-Ghazal SK, Fallowfield L, Blamey RW. Does cosmetic outcome from treatment of primary breast cancer influence psychosocial morbidity? Eur J Surg Oncol 1999;25:571-3. [CrossRef]
- Wilkins A, Mossop H, Syndikus I, Khoo V, Bloomfield D, Parker C, et al. Hypofractionated radiotherapy versus conventionally fractionated radiotherapy for patients with intermediate-risk localised prostate cancer: 2-year patient-reported outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol 2015;16:1605-16. [CrossRef]
- Donovan JL, Hamdy FC, Lane JA, Mason M, Metcalfe C, Walsh E, et al. Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med 2016;375:1425-37. [CrossRef]
- Azria D, Betz M, Bourgier C, Jeanneret Sozzi W, Ozsahin M. Identifying patients at risk for late radiation-induced toxicity. Crit Rev Oncol Hematol 2012;84:35-41. [CrossRef]
- Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 Lyon, France: International Agency for Research on Cancer. 2013. [CrossRef]
- Soerjomataram I, Lortet-Tieulent J, Parkin DM, Ferlay J, Mathers C, Forman D, et al. Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet 2012;380:1840-50. [CrossRef]
- Ozsahin M, Crompton NE, Gourgou S, Kramar A, Li L, Shi Y, et al. CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: a prospective study in 399 patients. Clin Cancer Res 2005;11:7426-33. [CrossRef]
- Azria D, Belkacemi Y, Romieu G, Gourgou S, Gutowski M, Zaman K, et al. Concurrent or sequential adjuvant letrozole and radiotherapy after conservative surgery for early-stage breast cancer (CO-HO-RT): a phase 2 randomised trial. Lancet Oncol 2010;11:258-65. [CrossRef]
- Azria D, Riou O, Castan F, Nguyen TD, Peignaux K, Lemanski C, et al. Radiation-induced CD8 T-lymphocyte Apoptosis as a Predictor of Breast Fibrosis After Radiotherapy: Results of the Prospective Multicenter French Trial. EBioMedicine 2015;2:1965-73. [CrossRef]
- Azria D, Crehange G, Castan F, Schwartz E, Belkacemi Y, Lagrange JL, Nguyen TD, et al. Results of the prospective trial evaluating radiation-induced lymphocyte apoptosis and prostate RT (Proc ESTRO Annual Meeting). Radiother Oncol 2019;133:256.
- Borgmann K, Roper B, El-Awady R, Brackrock S, Bigalke M, Dork T, et al. Indicators of late normal tissue response after radiotherapy for head and neck cancer: fibroblasts, lymphocytes, genetics, DNA repair, and chromosome aberrations. Radiother Oncol 2002;64:141-52. [CrossRef]
- Hoeller U, Borgmann K, Bonacker M, Kuhlmey A, Bajrovic A, Jung H, et al. Individual radiosensitivity measured with lymphocytes may be used to predict the risk of fibrosis after radiotherapy for breast cancer. Radiother Oncol 2003;69:137-44. [CrossRef]
- Chua ML, Somaiah N, A’Hern R, Davies S, Gothard L, Yarnold J, et al. Residual DNA and chromosomal damage in ex vivo irradiated blood lymphocytes correlated with late normal tissue response to breast radiotherapy. Radiother Oncol 2011;99:362-6. [CrossRef]
- Brunt AM, Haviland JS, Sydenham M, Agrawal RK, Algurafi H, Alhasso A, et al. Ten-Year Results of FAST: A Randomized Controlled Trial of 5-Fraction Whole-Breast Radiotherapy for Early Breast Cancer. J Clin Oncol 2020;38:3261-72. [CrossRef]
- Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol 2016;17:1047-60. [CrossRef]
- Staffurth JN, Haviland JS, Wilkins A, Syndikus I, Khoo V, Bloomfield D, et al. Impact of Hypofractionated Radiotherapy on Patient-reported Outcomes in Prostate Cancer: Results up to 5 yr in the CHHiP trial (CRUK/06/016). Eur Urol Oncol 2021;4:980-92. [CrossRef]
- Moquet J, Rothkamm K, Barnard S, Ainsbury E. Radiation Biomarkers in Large Scale Human Health Effects Studies. J Pers Med 2020;10:155. [CrossRef]
- Horn S, Barnard S, Rothkamm K. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PLoS One 2011;6:e25113. [CrossRef]
- Veldwijk MR, Seibold P, Botma A, Helmbold I, Sperk E, Giordano FA, et al. Association of CD4(+) Radiation-Induced Lymphocyte Apoptosis with Fibrosis and Telangiectasia after Radiotherapy in 272 Breast Cancer Patients with >10-Year Follow-up. Clin Cancer Res 2019;25:562-72. [CrossRef]
- Talbot C, Azria D, Burr T, Chang-Claude J, Dunning A, Farcy Jacquet MP, et al. Analysis of biomarkers for late radiotherapy toxicity in the REQUITE project (Proc ESTRO Annual Meeting). Radiother Oncol 2019;133:343. [CrossRef]
- Seibold P, Webb A, Aguado-Barrera ME, Azria D, Bourgier C, Brengues M, et al. REQUITE: A prospective multicentre cohort study of patients undergoing radiotherapy for breast, lung or prostate cancer. Radiother Oncol 2019;138:59-67. [CrossRef]
- Whelan TJ, Pignol JP, Levine MN, Julian JA, MacKenzie R, Parpia S, Shelley W, et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med 2010;362:513-20. [CrossRef]
- Haviland JS, Owen JR, Dewar JA, Agrawal RK, Barrett J, Barrett-Lee PJ, et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol 2013;14:1086-94. [CrossRef]
- Dubray B, Delanian S, Lefaix JL. Predictive tests of response to radiotherapy. Assessment and perspectives in 1997. Cancer Radiother 1997;1:473-83. [CrossRef]
- Brand DH, Bruningk SC, Wilkins A, Fernandez K, Naismith O, Gao A et al. Estimates of Alpha/Beta (alpha/beta) Ratios for Individual Late Rectal Toxicity Endpoints: An Analysis of the CHHiP Trial. Int J Radiat Oncol Biol Phys 2021;110:596-608. [CrossRef]
- Foro P, Algara M, Lozano J, Rodriguez N, Sanz X, Torres E, et al. Relationship between radiation-induced apoptosis of T lymphocytes and chronic toxicity in patients with prostate cancer treated by radiation therapy: a prospective study. Int J Radiat Oncol Biol Phys 2014;88:1057-63. [CrossRef]
- Bordon E, Henriquez-Hernandez LA, Lara PC, Ruiz A, Pinar B, Rodriguez-Gallego C, et al. Prediction of clinical toxicity in locally advanced head and neck cancer patients by radio-induced apoptosis in peripheral blood lymphocytes (PBLs). Radiat Oncol 2010;5:4. [CrossRef]
- Bordon E, Henriquez-Hernandez LA, Lara PC, Pinar B, Rodriguez-Gallego C, Lloret M, et al. Role of CD4 and CD8 T-lymphocytes, B-lymphocytes and Natural Killer cells in the prediction of radiation-induced late toxicity in cervical cancer patients. Int J Radiat Biol 2011;87:424-31. [CrossRef]
- Chaouni S, Lecomte DD, Stefan D, Leduc A, Barraux V, Leconte A, et al. The Possibility of Using Genotoxicity, Oxidative Stress and Inflammation Blood Biomarkers to Predict the Occurrence of Late Cutaneous Side Effects after Radiotherapy. Antioxidants (Basel) 2020;9:220. [CrossRef]
- Pinar B, Henriquez-Hernandez LA, Lara PC, Bordon E, Rodriguez-Gallego C, Lloret M, et al. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients. Radiat Oncol 2010;5:85. [CrossRef]
- West C, Azria D, Chang-Claude J, Davidson S, Lambin P, Rosenstein B, et al. The REQUITE project: validating predictive models and biomarkers of radiotherapy toxicity to reduce side-effects and improve quality of life in cancer survivors. Clin Oncol 2014;26:739-42. [CrossRef]
- Azria D, Ozsahin M, Kramar A, Peters S, Atencio DP, Crompton NE, et al. Single nucleotide polymorphisms, apoptosis, and the development of severe late adverse effects after radiotherapy. Clin Cancer Res 2008;14:6284-8. [CrossRef]
- Kerns SL, Fachal L, Dorling L, Barnett GC, Baran A, Peterson DR, et al. Radiogenomics Consortium Genome-Wide Association Study Meta-Analysis of Late Toxicity After Prostate Cancer Radiotherapy. J Natl Cancer Inst 2020;112:179-90. [CrossRef]
- Franco NR, Massi MC, Ieva F, Manzoni A, Paganoni AM, Zunino P, et al. Development of a method for generating SNP interaction-aware polygenic risk scores for radiotherapy toxicity. Radiother Oncol 2021;159:241-48. [CrossRef]
- Massi MC, Gasperoni F, Ieva F, Paganoni AM, Zunino P, Manzoni A, et al. A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort. Front Oncol 2020;10:541281. [CrossRef]
- Azria D, Lapierre A, Gourgou S, De Ruysscher D, Colinge J, Lambin P, et al. Data-Based Radiation Oncology: Design of Clinical Trials in the Toxicity Biomarkers Era. Front Oncol 2017;7:83. [CrossRef]
- Coles CE, Griffin CL, Kirby AM, Titley J, Agrawal RK, Alhasso A et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet 2017; 390:1048-60. [CrossRef]
- de Mol van Otterloo SR, Christodouleas JP, Blezer ELA, Akhiat H, Brown K, Choudhury A, et al. Patterns of Care, Tolerability, and Safety of the First Cohort of Patients Treated on a Novel High-Field MR-Linac Within the MOMENTUM Study: Initial Results From a Prospective Multi-Institutional Registry. Int J Radiat Oncol Biol Phys 2021;111:867-75. [CrossRef]
- Cozzarini C. Radiation Induced Lymphocyte Apoptosis: An Effective Way of “Tailoring” Radiotherapy to the Right Patients Only? EBioMedicine 2015;2:1852-3. [CrossRef]




| (A). | |||
| FAST (N=103) |
|||
|
No. 63 (58, 68), 50, 79 |
|||
| Age | |||
| Median (IQR), range |
|||
| No. | % | ||
| Fractionation 50Gy/25f 30Gy/5f 28.5/5f |
30 36 37 |
29 35 36 |
|
| Histology | |||
| Ductal | 75 | 73 | |
| Lobular | 17 | 17 | |
| Mixed Special type |
7 4 |
7 3 |
|
| Tumour grade | |||
| 1 | 29 | 28 | |
| 2 | 66 | 64 | |
| 3 | 8 | 8 | |
| Pathological tumour size (cm) | |||
| <1 | 22 | 21 | |
| 1-2 | 60 | 58 | |
| ≥2 | 21 | 20 | |
| Axillary surgery | |||
| Axillary clearance | 41 | 40 | |
| Axillary sampling | 39 | 38 | |
| SNB | 15 | 15 | |
| SNB & axillary sampling Other |
5 3 |
5 3 |
|
| Adjuvant therapy None Tamoxifen AI Tamoxifen → AI |
10 74 16 3 |
10 72 15 3 |
|
| f: fraction; SNB: Sentinel node biopsy; AI; Aromatase inhibitor. | |||
| (B). | |||
| CHHiP (N=297) | |||
| No. 70 (65, 74), 53, 83 |
|||
| Age | |||
| Median (IQR), range | |||
| No. | % | ||
| Fractionation 74Gy/37f 60Gy/20f 57Gy/19f |
103 96 98 |
35 32 33 |
|
| NCCN risk group | |||
| Low Risk | 48 | 16 | |
| Intermediate Risk | 231 | 78 | |
| High Risk | 18 | 6 | |
| Gleason score | |||
| ≤6 | 99 | 33 | |
| 7 | 191 | 64 | |
| 8 | 7 | 2 | |
| Clinical T stage | |||
| T1a/T1b/T1c/T1x | 138 | 46 | |
| T2a/T2b/T2c/T2x | 133 | 45 | |
| T3a/T3x | 26 | 9 | |
| Pre-hormone PSA (ng/ml) |
10.9 (7.6, 15.2), 0.3, 29 11.9 (5.4) |
||
| Median (IQR), range | |||
| Mean (SD) | |||
| Intended hormone therapy | |||
| LHRH+ short term AA | 273 | 92 | |
| 150 mg Bicalutamide | 20 | 7 | |
| MAB | 2 | 1 | |
| None | 1 | <1 | |
| Duration of hormone therapy (weeks) |
22 (18, 26) |
||
| Median (IQR) | |||
| Time from start of hormone therapy to radiotherapy (weeks) |
15 (13, 18) |
||
| Median (IQR) | |||
| Biomarker | FAST | CHHiP | Comparison between FAST and CHHiP; P-value* |
||||
|---|---|---|---|---|---|---|---|
| N | Median (IQR) | Range | N | Median (IQR) | Range | ||
| Primary biomarkers of interest | |||||||
| Lymphocyte apoptosis | 100 | 18.18 (12.13-23.65) |
6.40-50.34 | 296 | 18.25 (13.64-24.64) |
4.55-61.87 | 0.642 |
| Total aberrations/cell | 103 |
6.38 (5.90-6.80) |
4.78-7.86 | 297 |
5.86 (5.36-6.28) |
4.12-8.40 | <0.001 |
| Foci/cell 4 Gy at 24h | 98 |
9.70 (9.10-10.20) |
7.20-12.30 | 275 |
10.00 (9.30-10.60) |
7.60-12.80 | 0.015 |
| Secondary biomarkers of interest | |||||||
| Dicentrics/cell | 103 |
3.16 (2.86-3.50) |
1.86-3.88 | 297 |
2.86 (2.50-3.22) |
1.94-4.28 | <0.001 |
| Foci/cell 0.5 Gy at 30min | 93 | 8.40 (8.00-8.80) |
6.60-10.60 | 258 | 8.40 (7.90-8.90) |
5.90-10.30 | 0.900 |
| Ratio of 4 Gy / 0.5 Gy | 90 |
1.16 (1.11-1.24) |
0.81-1.54 | 253 |
1.22 (1.12-1.29) |
0.89-1.58 | 0.037 |
| Micronuclei no cut-off | 99 |
0.49 (0.23-1.08) |
0.05-2.64 | 293 |
0.29 (0.20-0.57) |
0.06-2.28 | <0.001 |
| Micronuclei >4 cut-off | 99 |
0.34 (0.20-0.46) |
0.05-0.73 | 293 |
0.24 (0.18-0.33) |
0.06-0.67 | <0.001 |
| Nuclear division index | 98 | 1.14 (1.10-1.20) |
1.04-1.40 | 285 | 1.15 (1.11-1.20) |
1.04-1.49 | 0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
