Submitted:
25 May 2023
Posted:
26 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant materials
2.2. Experimental design
2.3. Sampling and measurements
2.3.1. Yield and yield components
2.3.2. Biomass and related properties
2.3.3. Leaf area index (LAI) and grain-leaf ratio
2.3.4. Radiation use efficiency (RUE) and net photosynthetic rate (Pn)
2.3.5. Plant N uptake and N use efficiency
2.4. Statistical Analysis
3. Results
3.1. Grain yield and its components
3.2. Biomass production
3.3. Net photosynthetic rate (Pn), RUE, and sink-source relationship
3.4. Plant N uptake and N use efficiency
4. Discussion
4.1. Yield responses of HQIR to N application rates
4.2. Agronomical and physiological responses of HQIR to N application rates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, S.; Cao, L.; Zhuang, J.; Chen, S.; Zhan, X.; Fan, Y.; Zhu, D.; Min, S. Super hybrid rice breeding in China: achievements and prospects. J. Integr. Plant Biol. 2007, 49, 805–810. [Google Scholar] [CrossRef]
- Peng, S.; Khush, G.; Virk, P.; Tang, Q.; Zou, Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 2008, 108, 32–38. [Google Scholar] [CrossRef]
- Yuan, L. Increasing yield potential in rice by exploitation of heterosis. In: Virmani SS (ed) Hybrid Rice Technology: New Development and Future Prospects. International Rice Research Institute, Los Baños, Philippines 1994, pp 1-6. [Google Scholar]
- FAOSTAT. https://www.fao.org/faostat/zh/#data.
- Zhou, H.; Xia, D.; He, Y. Rice grain quality-traditional traits for high quality rice and health-plus substances. Mol Breeding 2020, 40, 1–17. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.; Wang, Y.; Ning, M.; Jing, Q.; Zhang, C. Current situation and suggestions on the development of high-quality rice branding in China. China rice 2022, 28, 12–15. (In Chinese) [Google Scholar] [CrossRef]
- Liao, F.; Zhou, K.; Yang, H.; Xu, Q. Comparison of grain quality between F1 hybrids and their parents in indica hybrid rice. Chinese J. Rice Sci 2003, 17, 134–140. (In Chinese) [Google Scholar]
- Peng, S.; Tang, Q.; Zou, Y. Current status and challenges of rice production in China. Plant Prod Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Q.; Cai, X.; Wang, H.; Tang, S.; Yu, H.; Wang, Z.; Gu, M. Molecular marker-assisted selection for improved cooking and eating quality of two elite parents of hybrid rice. Crop Sci. 2006, 46, 2354–2360. [Google Scholar] [CrossRef]
- Feng, F.; Li, Y.; Qin, X.; Liao, Y.; Siddique, K. Changes in rice grain quality of indica and japonica type varieties released in China from 2000 to 2014. Front in Plant Sci. 2017, 8, 01863. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Cai, Q.; Liao, C.; Mao, X.; Xie, H.; Zhu, Y.; Lian, L.; Luo, X.; Xie, H.; Zhang, J. Population structure and association analysis of yield and grain quality traits in hybrid rice primal parental lines. Euphytica 2016, 212, 261–273. [Google Scholar] [CrossRef]
- Kinoshita, N.; Kato, M.; Koyasaki, K.; Kawashima, T.; Nishimura, T.; Hirayama, Y.; Takamure, I.; Sato, T.; Kato, K. Identification of quantitative trait loci for rice grain quality and yield-related traits in two closely related Oryza sativa L. subsp. japonica cultivars grown near the northernmost limit for rice paddy cultivation. Breeding Sci. 2017, 67, 191–206. [Google Scholar] [CrossRef]
- Zeng, D.; Tian, Z.; Rao, Y.; Dong, G.; Yang, Y.; Huang, L.; Leng, Y.; Xu, J.; Sun, C.; Zhang, G.; Hu, J.; Zhu, L.; Gao, Z.; Hu, X.; Guo, L.; Xiong, G.; Wang, Y.; Li, J.; Qian, Q. Rational design of high-yield and superior-quality rice. Nat Plants 2017, 17031. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, K.; Yuan, Q.; Liu, X.; Liu, Z.; Lin, X.; Zeng, R.; Zhu, H.; Dong, G.; Qian, Q.; Zhang, G.; Fu, X. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet. 2012, 44, 950–954. [Google Scholar] [CrossRef]
- Lin, H.; Li, H.; E, Z.; Pang, Q. Analysis on characteristics of rice varieties registered in China in 2020. China rice 2021, 27, 6–11. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, B.; Jiang, Y.; Cao, C. Balance rice yield and eating quality by changing the traditional nitrogen management for sustainable production in China. J. Clean. Prod. 2021, 312, 127793. [Google Scholar] [CrossRef]
- Peng, S.; Buresh, R.; Huang, J.; Yang, J.; Zou, Y.; Zhong, X.; Wang, G.; Zhang, F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; Deng, X.; Gao, Q.; Zhang, Q.; Guo, S.; Ren, Jun. ; Li, S.; Ye, Y.; Wang, Z.; Huang, J.; Tang, Q.; Sun, Y.; Peng, X.; Zhang, J.; He, M.; Zhu, Y.; Xue, J.; Wang, G.; Wu, L.; An, N.; Wu,L.; Ma, L.; Zhang, W.; Zhang, F. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Peng, S. Yield potential and nitrogen use efficiency of China’s super rice. J. Integr. Agr. 2017, 16, 1000–1008. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, P.; Shan, S.; Gao, W.; Ma, G.; Zou, Y.; Uphoff, N.; Yuan, L. Higher yields of hybrid rice do not depend on nitrogen fertilization under moderate to high soil fertility conditions. Rice 2017, 10, 43. [Google Scholar] [CrossRef]
- Gu, J.; Chen, J.; Chen, L.; Wang, Z.; Zhang, H.; Yang, J. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. Crop Jour. 2015, 3, 285–297. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Guo, Ba.; Xu, K.; Dai, Q.; Wei, H.; Gao, H.; Hu, Y.; Cui, P.; Huo, Z. Effects of nitrogen level on yield and quality of japonica soft super rice. J. Integr. Agr. 2017, 16, 1018–1027. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Y.; Jia, B.; Wang, Y.; Wang, Y.; Xu, Q.; Li, R.; Wang, S.; Dou, F. Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agronomy 2018, 8, 246. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, R.; Liu, Y.; Yao, B.; Tang, W. Effect of different amount of nitrogen on the yield and the quality of high-quality rice and its nitrogen utilization efficiency. J. Hunan Agr. Univ. (Nat. Sci.) 2019, 45, 231–236. (In Chinese) [Google Scholar]
- Wu, J.; Que, R.; Qi, W.; Duan, G.; Wu, J.; Zeng, Y.; Pan, X.; Xie, X. Varietal variances of grain nitrogen content and its relations to nitrogen accumulation and yield of high-quality rice under different nitrogen rates. Agronomy 2022, 12, 2719. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, X.; Wang, S.; Hao, R.; Dang, C.; Hu, Y.; Liu, Y.; Mu, Q.; Tian, X. Effect of nitrogen application rate on yield and quality of high⁃quality rice in Jianghan Plain. J. Henan Agr. Sci. 2022, 51, 25–34. (In Chinese) [Google Scholar] [CrossRef]
- Huang, J.; He, F.; Cui, K.; Buresh, R. J.; Xu, B.; Gong, W.; Peng, S. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res. 2008, 105, 70–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Zou, Y.; Li, D.; Qin, J.; Yang, S.; Chen, Li.; Xia, B.; Peng, S. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res. 2009, 114, 91–98. [Google Scholar] [CrossRef]
- Ladha, J.; Tirol-Padre, A.; Reddy, C.; Verma, S.; Powlson, D. S.; van Kessel, C; Richter, D. B.; Chakraborty, D.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Sci Rep 2016, 6, 19355. [Google Scholar] [CrossRef]
- Huang, M.; Lei, T.; Cao, F.; Chen, J.; Shan, S.; Zou, Y. Grain yield responses to nitrogen rate in two elite double-cropped inbred rice cultivars released 41 years apart. Field Crops Res. 2020, 259, 107970. [Google Scholar] [CrossRef]
- Fu, P.; Wang, J.; Zhang, T.; Huang, J; Peng, S. High nitrogen input causes poor grain filling of spikelets at the panicle base of super hybrid rice. Field Crops Res. 2019, 244, 107635. [Google Scholar] [CrossRef]
- Jiang, P.; Xie, X.; Huang, M.; Zhou, X.; Zhang, R.; Chen, J.; Wu, D.; Xia, B.; Xiong, H.; Xu, F.; Zou, Y. Potential yield increase of hybrid rice at five locations in southern China. Rice 2016, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, J. Grain-filling problem in “super” rice. J. Exp. Bot. 2010, 61, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, P.; Panigrahi, R. Ethylene control of grain development in the inferior spikelets of rice panicle. Adv. Plant Physiol. 2011, 12, 79–89. [Google Scholar]
- Liang, Z.; Bao, A.; Li, H.; Cai, H. The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression. Biologia 2015, 70, 1340–1350. [Google Scholar] [CrossRef]
- Ling, Q.; Yang, J. Studies on “grain-leaf ratio” of population and cultural approaches of high yield in rice plants. Sci Agric Sin 1986, 19, 1–8. (In Chinese) [Google Scholar]
- Zhang, H.; Chen, T.; Liu, L.; Wang, Z.; Yang, J.; Zhang, J. Performance in grain yield and physiological traits of rice in the Yangtze River Basin of China during the last 60 yr. J. Integr. Agr. 2013, 12, 57–66. [Google Scholar] [CrossRef]
- Wei, H.; Meng, T.; Li, X.; Dai, Q.; Zhang, H.; Yin, X. Sink-source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Res. 2018, 215, 23–38. [Google Scholar] [CrossRef]



| Type | Variety | Length-width ratio | Percentage of chalky grains (%) | Chalkiness degree (%) | Gel consistency (mm) | Amylose content (%) |
|---|---|---|---|---|---|---|
| HQIR | YXY | 4.0 | 5.0 | 0.9 | 69 | 13.9 |
| WXY | 3.9 | 9.0 | 1.8 | 73 | 15.0 | |
| OQIR | JY | 3.3 | 23.0 | 4.8 | 30 | 25.9 |
| KY | 2.9 | 33.0 | 8.2 | 36 | 18.5 |
| Year | N rate | Variety | Panicles (m−2) |
Spikelets (panicle−1) |
Spikelets (×103 m−2) |
Grain setting rate (%) |
Grain weight (mg) |
Grain yield (t hm−2) |
|---|---|---|---|---|---|---|---|---|
| 2020 | Moderate | YXY | 311.19 a | 146.71 b | 45.64 c | 73.89 a | 19.81 d | 7.51 c |
| N | WXY | 298.76 b | 144.99 b | 43.31 d | 72.74 a | 23.38 a | 7.64 c | |
| MeanHQR | 304.97 B | 145.85 B | 44.48 C | 73.32 A | 21.60 B | 7.58 C | ||
| KY | 283.00 c | 172.82 a | 48.90 a | 74.43 a | 21.54 c | 8.63 a | ||
| JY | 279.62 c | 170.19 a | 47.58 b | 70.16 b | 22.53 b | 8.33 b | ||
| MeanOQR | 281.31 D | 171.51 A | 48.24 B | 72.29 AB | 22.03 A | 8.48 B | ||
| High N | YXY | 327.69 a | 140.33 b | 45.97 c | 69.95 b | 19.72 d | 7.35 c | |
| WXY | 315.90 b | 137.70 b | 43.50 d | 67.63 c | 23.13 a | 7.46 c | ||
| MeanHQR | 321.80 A | 139.02 C | 44.74 C | 68.79 C | 21.42 B | 7.41 C | ||
| KY | 300.14 c | 170.09 a | 51.04 a | 73.67 a | 21.73 c | 9.19 a | ||
| JY | 293.48 c | 169.24 a | 49.66 b | 69.67 b | 22.62 b | 8.90 b | ||
| MeanOQR | 296.81 C | 169.66 A | 50.35 A | 71.67 B | 22.17 A | 9.04 A | ||
| 2021 | Moderate | YXY | 301.02 a | 146.17 b | 43.00 b | 81.95 a | 20.71 c | 8.47 b |
| N | WXY | 286.38 b | 142.67 b | 40.85 c | 81.58 a | 23.68 a | 8.79 b | |
| MeanHQR | 293.70 B | 144.42 B | 42.42 C | 81.76 A | 22.19 B | 8.63 C | ||
| KY | 281.67 b | 164.66 a | 46.37 a | 82.15 a | 23.24 b | 9.37 a | ||
| JY | 280.29 b | 163.18 a | 45.73 a | 82.61 a | 23.51 a | 9.34 a | ||
| MeanOQR | 280.98 C | 163.92 A | 46.05 B | 82.35 A | 23.38 A | 9.35 B | ||
| High N | YXY | 325.49 a | 136.08 b | 44.27 c | 77.39 b | 20.57 c | 8.18 b | |
| WXY | 305.99 b | 133.88 b | 40.96 d | 76.99 b | 23.43 b | 8.44 b | ||
| MeanHQR | 315.74 A | 134.98 C | 42.62 C | 77.19 B | 21.00 B | 8.31 C | ||
| KY | 300.95 bc | 163.12 a | 49.09 a | 82.09 a | 23.39 b | 10.29 a | ||
| JY | 293.61 c | 160.18 a | 47.02 b | 81.31 a | 23.74 a | 10.08 a | ||
| MeanOQR | 297.28 B | 161.65 A | 48.06 A | 81.73 A | 23.56 A | 10.18 A | ||
| Analysis of variance | ||||||||
| 2020 | N rate | ** | * | ** | ** | ns | * | |
| Variety | *** | *** | *** | *** | *** | *** | ||
| N rate ×Variety | ns | ns | *** | ** | ns | ** | ||
| 2021 | N rate | * | * | * | * | ns | * | |
| Variety | *** | *** | *** | ** | *** | *** | ||
| N rate ×Variety | ns | ns | *** | * | ** | *** | ||
| Year | N rate | Variety | Biomass (g m−2) | Pre-anthesis AE (g m−2) |
Contribution of pre-anthesis AE (%) |
Post-anthesis DM (g m−2) |
Contribution of post-anthesis DM (%) | |
|---|---|---|---|---|---|---|---|---|
| Heading | Maturity | |||||||
| 2020 | Moderate | YXY | 1020.44 a | 1401.26 c | 261.17 a | 34.75 a | 380.82 d | 50.70 c |
| N | WXY | 1017.14 a | 1423.75 b | 248.60 b | 32.55 b | 406.61 c | 53.22 c | |
| MeanHQR | 1018.79 B | 1412.50 D | 254.89 A | 33.65 A | 393.72 C | 51.96 C | ||
| KY | 926.18 c | 1449.41 b | 216.34 d | 25.07 d | 523.23 a | 60.61 a | ||
| JY | 943.90 b | 1424.06 a | 234.17 c | 28.10 c | 480.16 b | 57.62 b | ||
| MeanOQR | 935.04 D | 1436.73 C | 225.26 B | 26.58 C | 501.70 B | 59.12 A | ||
| High N | YXY | 1097.13 a | 1488.93 c | 223.21 ab | 30.37 a | 391.80 d | 53.28 d | |
| WXY | 1090.88 a | 1504.64 b | 208.60 c | 27.96 b | 413.76 c | 55.48 c | ||
| MeanHQR | 1094.00 A | 1496.78 B | 215.91 B | 29.17 B | 402.78 C | 54.38 B | ||
| KY | 980.86 c | 1553.18 a | 215.52 bc | 23.45 d | 572.32 a | 62.29 a | ||
| JY | 1018.90 b | 1547.35 a | 229.42 a | 25.79 c | 528.45 b | 59.39 b | ||
| MeanOQR | 999.88 C | 1550.26 A | 222.47 B | 24.62 D | 550.39 A | 60.84 A | ||
| 2021 | Moderate | YXY | 1019.01 a | 1424.81 d | 309.24 a | 36.52 a | 405.80 d | 47.93 d |
| N | WXY | 1012.80 a | 1452.75 c | 277.29 b | 31.56 b | 439.95 c | 50.05 c | |
| MeanHQR | 1015.90 B | 1438.78 D | 293.27 A | 34.04 A | 422.88 C | 48.99 D | ||
| KY | 903.15 c | 1473.05 b | 230.22 d | 24.57 c | 569.90 a | 60.81 a | ||
| JY | 949.54 b | 1501.22 a | 243.39 c | 26.07 c | 551.68 b | 59.10 b | ||
| MeanOQR | 926.35 D | 1487.13 C | 236.81 C | 25.32 C | 560.79 B | 59.95 B | ||
| High N | YXY | 1089.88 a | 1501.06 c | 272.30 a | 33.28 a | 411.18 d | 50.27 b | |
| WXY | 1072.48 b | 1520.58 b | 253.93 b | 30.07 b | 448.10 c | 53.08 b | ||
| MeanHQR | 1081.18 A | 1510.82 B | 263.12 B | 31.68 B | 429.64 C | 51.67 C | ||
| KY | 929.89 d | 1575.81 a | 222.42 d | 21.62 d | 645.92 a | 62.80 a | ||
| JY | 961.56 c | 1583.48 a | 235.86 c | 23.39 c | 621.92 b | 61.70 a | ||
| MeanOQR | 945.73 C | 1579.64 A | 229.14 C | 22.51 D | 633.92 A | 62.25 A | ||
| Analysis of variance | ||||||||
| 2020 | N rate | *** | *** | ** | ** | ** | * | |
| Variety | *** | *** | ** | *** | *** | *** | ||
| N rate ×Variety | *** | *** | *** | * | *** | ns | ||
| 2021 | N rate | *** | *** | ** | ** | * | ||
| Variety | *** | *** | *** | ** | *** | *** | ||
| N rate ×Variety | *** | *** | *** | *** | *** | ns | ||
| Year | N rate | Variety | SPAD value | Pn (μmol CO2 m−2 s−1) | |||||
|---|---|---|---|---|---|---|---|---|---|
| HD | HD15d | HD30d | HD | HD15d | HD30d | ||||
| 2020 | Moderate | YXY | 34.89 d | 30.89 d | 21.01 b | 17.96 c | 15.43 b | 12.21 a | |
| N | WXY | 35.99 c | 32.10 c | 21.89 a | 18.10 c | 16.02 b | 11.46 b | ||
| MeanHQR | 35.44 C | 31.50 C | 21.45 B | 18.03 B | 15.73 C | 11.84 A | |||
| KY | 39.06 a | 33.00 b | 16.55 d | 23.25 a | 16.84 a | 10.34 c | |||
| JY | 37.98 b | 34.21 a | 18.77 c | 22.68 b | 16.99 a | 10.59 c | |||
| MeanOQR | 38.52 B | 33.61A | 17.66 D | 22.96 A | 16.92 B | 10.47 C | |||
| High N | YXY | 35.62 d | 31.89 c | 23.41 b | 18.39 c | 17.56 b | 12.37 a | ||
| WXY | 37.89 c | 33.78 b | 26.99 a | 18.84 c | 18.00 b | 12.00 b | |||
| MeanHQR | 36.76 C | 32.84 B | 25.20 A | 18.62 B | 17.78 B | 12.19 A | |||
| KY | 42.00 a | 34.88 a | 17.56 d | 25.51 a | 20.45 a | 11.00 d | |||
| JY | 39.44 b | 33.83 b | 19.83 c | 21.78 b | 18.00 b | 11.34 c | |||
| MeanOQR | 40.72 A | 34.36 A | 18.69 C | 23.65 A | 19.23 A | 11.17 B | |||
| 2021 | Moderate | YXY | 33.84 c | 29.50 c | 21.37 b | 17.80 b | 15.12 c | 11.99 a | |
| N | WXY | 36.41 b | 33.57 a | 24.46 a | 18.26 b | 15.93 b | 11.54 b | ||
| MeanHQR | 35.13 D | 31.54 C | 22.92 B | 18.03C | 15.53C | 11.77B | |||
| KY | 39.32 a | 32.19 b | 15.96 d | 23.02 a | 16.03 b | 10.01 c | |||
| JY | 38.57 a | 34.29 a | 16.65 c | 22.88 a | 16.94 a | 9.99 c | |||
| MeanOQR | 38.95 B | 33.24 B | 16.30 D | 22.95 B | 16.49 AB | 10.00 D | |||
| High N | YXY | 35.90 c | 32.78 c | 22.63 b | 18.19 d | 16.31 c | 12.32 a | ||
| WXY | 38.33 b | 34.23 b | 27.36 a | 18.73 c | 16.00 c | 11.94 b | |||
| MeanHQR | 37.11 C | 33.50 B | 25.00 A | 18.46 C | 16.16 BC | 12.13 A | |||
| KY | 41.78 a | 33.84 b | 16.96 d | 25.28 a | 17.34 a | 10.62 d | |||
| JY | 42.24 a | 36.55 a | 18.93 c | 24.41 b | 16.98 b | 11.05 c | |||
| MeanOQR | 42.01 A | 35.20 A | 17.94 C | 24.85 A | 17.16 A | 10.84 C | |||
| N rate | Variety | 2020 | 2021 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| LAI | Spikelets-leaf area ratio (cm−2) |
Filled grains-leaf area ratio (cm−2) |
Grain weight- leaf area ratio (mg cm−2) |
LAI | Spikelets-leaf area ratio (cm−2) |
Filled grains-leaf area ratio (cm−2) |
Grain weight- leaf area ratio (mg cm−2) |
||
| Moderate | YXY | 7.08 a | 0.64b | 0.48c | 9.44c | 7.13 a | 0.62b | 0.51b | 10.48c |
| N | WXY | 6.99 a | 0.62c | 0.45d | 10.54b | 6.94 a | 0.59b | 0.48c | 11.26b |
| MeanHQR | 7.04 B | 0.63B | 0.46B | 9.99B | 7.03 B | 0.60B | 0.49B | 10.87B | |
| KY | 6.51 b | 0.75a | 0.56a | 12.05a | 6.51 b | 0.73a | 0.60a | 14.07a | |
| JY | 6.36 b | 0.75a | 0.52b | 11.82a | 6.39 b | 0.72a | 0.59a | 13.90a | |
| MeanOQR | 6.43 D | 0.75A | 0.54A | 11.94A | 6.45 D | 0.72A | 0.60A | 13.98A | |
| High N | YXY | 7.68 a | 0.60b | 0.42c | 8.24c | 7.60 a | 0.58b | 0.45c | 9.27c |
| WXY | 7.36 b | 0.59b | 0.40d | 9.25b | 7.44 b | 0.55b | 0.42d | 10.03b | |
| MeanHQR | 7.52 A | 0.59C | 0.41C | 8.74C | 7.52 A | 0.57C | 0.44C | 9.65C | |
| KY | 6.76 c | 0.76a | 0.56a | 12.09a | 6.72 c | 0.73a | 0.61a | 14.19a | |
| JY | 6.57 d | 0.76a | 0.53b | 11.91a | 6.52 d | 0.72a | 0.59b | 14.04a | |
| MeanOQR | 6.66 C | 0.76A | 0.54A | 12.00A | 6.62 C | 0.73A | 0.60A | 14.11A | |
| Year | N rate | Variety | N uptake at heading (kg ha−2) |
N uptake at maturity (kg ha−2) |
Post-anthesis N uptake (kg ha−2) |
Pre- anthesis N exportation (kg ha−2) |
NUEg (kg kg−1) |
|---|---|---|---|---|---|---|---|
| 2020 | Moderate | YXY | 123.47 c | 149.87c | 26.40b | 44.55b | 50.22bc |
| N | WXY | 122.38 c | 157.87b | 35.49a | 41.78b | 48.41c | |
| MeanHQR | 122.92 C | 153.87D | 30.95AB | 43.16C | 49.31B | ||
| KY | 129.81 b | 164.59a | 34.78a | 55.29a | 52.45a | ||
| JY | 134.72 a | 162.73a | 28.01b | 59.37a | 51.22ab | ||
| MeanOQR | 132.26 B | 163.66C | 31.40A | 57.33B | 51.84A | ||
| High N | YXY | 156.24 ab | 177.80b | 21.56b | 62.18b | 41.37b | |
| WXY | 152.01 bc | 174.57b | 22.56b | 56.29c | 42.76b | ||
| MeanHQR | 154.13 A | 176.18B | 22.06C | 59.23B | 42.06C | ||
| KY | 151.50 c | 184.54a | 33.04a | 68.41a | 49.83a | ||
| JY | 160.38 a | 184.49a | 24.11b | 69.89a | 48.23a | ||
| MeanOQR | 155.94 A | 184.52A | 28.58B | 69.15A | 49.03B | ||
| 2021 | Moderate | YXY | 125.62 bc | 142.64d | 17.02c | 50.92c | 59.36b |
| N | WXY | 124.42 c | 146.90c | 22.49ab | 47.23d | 59.85ab | |
| MeanHQR | 125.02 D | 144.77D | 19.75B | 49.07C | 59.60A | ||
| KY | 128.88 ab | 152.56b | 23.68a | 56.89b | 61.45a | ||
| JY | 136.72 a | 155.11a | 18.38bc | 61.22a | 60.24ab | ||
| MeanOQR | 132.80 C | 153.84C | 21.03B | 59.05B | 60.84A | ||
| High N | YXY | 159.63 a | 172.13b | 12.50c | 64.66bc | 47.54c | |
| WXY | 153.87 b | 167.80c | 13.94c | 59.81c | 50.32b | ||
| MeanHQR | 156.75 A | 169.97B | 13.22C | 62.24B | 48.93C | ||
| KY | 145.35 c | 181.80a | 36.45a | 68.64b | 56.59a | ||
| JY | 154.68 b | 183.73a | 29.05b | 76.04a | 54.87a | ||
| MeanOQR | 150.01 B | 182.77A | 32.75A | 72.34A | 55.73B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
