Submitted:
16 May 2023
Posted:
17 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Method
2.1. Experimental Setup
2.2. Data extraction and preparation
3. Data Sets
3.1. Time Series data
3.2. Spectral data

4. The Results of the Logistic Regression Model
5. Discussion and Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shtienberg, G.; Dix, J.; Waldmann, N.; Makovsky, Y.; Golan, A.; Sivan, D. Late-Pleistocene evolution of the continental shelf of central Israel, a case study from Hadera. Geomorphology 2016, 261, 200–211. [Google Scholar] [CrossRef]
- Pergent, G.; Monnier, B.; Clabaut, P.; Gascon, G.; Pergent-Martini, C.; Valette-Sansevin, A. Innovative method for optimizing Side-Scan Sonar mapping: The blind band unveiled. Estuarine, Coastal and Shelf Science 2017, 194, 77–83. [Google Scholar] [CrossRef]
- Boswarvaa, K.; Butters, A.; Foxa, C.J.; Howea, J.A.; Narayanaswamy, B. Improving marine habitat mapping using high-resolution acoustic data; a predictive habitat map for the Firth of Lorn, Scotland. Continental Shelf Research 2018, 168, 39–47. [Google Scholar] [CrossRef]
- Jaijela, R.; Kanari, M.; Glover, J.B.; Rissolo, D.; Beddows, P.A.; Ben-Avraham, Z.; Goodman-Tchernov, B.N. Shallow geophysical exploration at the ancient maritime Maya site of Vista Alegre, Yucatan Mexico. Journal of Archaeological Science: Reports 2018, 19, 52–63. [Google Scholar] [CrossRef]
- Innangi, S.; Tonielli, R.; Romagnolo, C.; Budillon, F.; Di Martino, G.; Innangi, M.; Laterza, R.; Le Bas, T.; Lo Iacono, C. Seabed mapping in the Pelagie Islands marine protected area (Sicily Channel, southern Mediterranean) using Remote Sensing Object Based Image Analysis (RSOBIA). Marine Geophysical Research 2019, 40, 333–355. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.P. Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters. Estuarine, Coastal and Shelf Science 2019, 226, 106277. [Google Scholar] [CrossRef]
- Crocker, S.E.; Fratantonio:, F.D.; Hart, P.E.; Foster, D.S.; O’Brien, T.F.; Labak, S. Measurement of Sounds Emitted by Certain High-Resolution Geophysical Survey Systems. EEE Journal of oceanic engineering 2019, 44, 796–813. [Google Scholar] [CrossRef]
- Tayber, Z.; Meilijson, A.; Ben-Avraham, Z.; Makovsky, Y. Methane Hydrate Stability and Potential Resource in the Levant Basin, Southeastern Mediterranean Sea. Geosciences, 2019, 9, 306. [Google Scholar] [CrossRef]
- Sun, K.; Cui, W.; Chen, C. Review of Underwater Sensing Technologies and Applications. Sensors 2021, 21, 7849. [Google Scholar] [CrossRef]
- Wu, Q.; Ding, X.; Zhang, Y.; Chen, Z. Comparative Study on Seismic Response of Pile Group Foundation in Coral Sand and Fujian Sand. J. Mar. Sci. Eng. 2020, 8, 189. [Google Scholar] [CrossRef]
- Liu, B.; Chang, S.; Zhang, S.; Li, Y.; Yang, Z.; Liu, Z.; Chen, Q. Seismic-Geological Integrated Study on Sedimentary Evolution and Peat Accumulation Regularity of the Shanxi Formation in Xinjing Mining Area, Qinshui Basin. Energies 2022, 15, 1851. [Google Scholar] [CrossRef]
- Modenesi, M.C.; Santamarina, J.C. Hydrothermal metalliferous sediments in Red Sea deeps: Formation, characterization and properties. Engineering Geology 2022, 305, 106720. [Google Scholar] [CrossRef]
- Pace, N.G.; Gao, H. Swathe seabed classification. IEEE Journal of oceanic engineering 1988, 13, 83–90. [Google Scholar] [CrossRef]
- Tamsett, D. Sea-bed characterization and classification from the power spectra of side-scan sonar data. Marine Geophysical Researches 1993, 15, 43–64. [Google Scholar] [CrossRef]
- Stevenson, I.R.; McCann, C.; Runciman, P.B. An attenuation-based sediment classification technique using Chirp sub-bottom profiler data and laboratory acoustic analysis. Marine Geophysical Research 2002, 23, 277–298. [Google Scholar] [CrossRef]
- Atallah, L.; Probert Smith, P.J.; Bates, C.R. Wavelet analysis of bathymetric side scan sonar data for the classification of seafloor sediments in Hopvågen Bay-Norway. Marine Geophysical Research 2002, 23, 431–442. [Google Scholar] [CrossRef]
- Kenny, A.J.; Cato, I.; Desprez, M.; Fader, G.; Schüttenhelm, R.T.E.; Side, J. An overview of seabed-mapping technologies in the context of marine habitat classification. ICES Journal of Marine Science 2003, 60, 411–418. [Google Scholar] [CrossRef]
- Reed, S.; Petillot, Y.; Bell, Y. An automatic approach to the detection and extraction of mine features inside scan sonar. IEEE Journal of oceanic engineering 2003, 28, 90–105. [Google Scholar] [CrossRef]
- Szuman, M.; Berndt, Ch.; Jacobs, C.; Best, A. Seabed characterization through a range of high-resolution acoustic systems–a case study offshore Oman. Marine Geophysical Research 2006, 27, 167–180. [Google Scholar] [CrossRef]
- Satyanarayana, Y.; Naithani, S.; Anu, R. Seafloor sediment classification from single beam echo sounder data using LVQ network. Marine Geophysical Research 2007, 28, 95–99. [Google Scholar] [CrossRef]
- Tian, W.-M. Integrated method for the detection and location of underwater pipelines. Applied Acoustics 2008, 69, 387–398. [Google Scholar] [CrossRef]
- Langner, F.; Knauer, Ch.; Ebert, A. Side scan sonar image resolution and automatic object detection, classification and identification. OCEANS 2009-EUROPE; IEEE, 2009. [Google Scholar]
- Sun, Z.; Hu, J.; Zheng, Q.; Li, C. Strong near-inertial oscillations in geostrophic shear in the northern South China Sea. J Oceanogr. 2011, 67, 377–384. [Google Scholar] [CrossRef]
- Nait-Chabane AZerr, B.; Le Chenadec, G. Side scan sonar imagery segmentation with a combination of texture and spectral analysis. OCEANS-Bergen, 2013 MTS/IEEE; IEEE, 2013. [Google Scholar]
- Satyanarayana, Y.; Nitheesh, Th. Segmentation and classification of shallow sub bottom acoustic data, using image processing and neural networks. Marine Geophysical Research 2014, 35, 149–156. [Google Scholar]
- Hyeonwoo, C.; Gu, J.; Joe, H.; Asada, A.; Yu, S.-C. Acoustic beam profile-based rapid underwater object detection for an imaging sonar. Journal of Marine Science and Technology 2015, 20, 180–197. [Google Scholar]
- Picard, L.; Alexandre Baussard, A.; Le Chenadec, G.; Quidu, I. Seafloor characterization for ATR applications using the monogenic signal the intrinsic dimensionality. OCEANS 2016 MTS/IEEEMonterey; IEEE. [CrossRef]
- Divinsky, B.V.; Kosyan, R.D. Spectral structure of surface waves and its influence on sediment dynamics. Oceanologia 2019, 61, 89–102. [Google Scholar] [CrossRef]
- Tęgowski, J. Acoustical classification of the bottom sediments in the southern Baltic Sea. Quaternary International 2005, 130, 2005–153. [Google Scholar] [CrossRef]
- Fezzani, R.; Berger, L. Analysis of calibrated seafloor backscatter for habitat classification methodology and case study of 158 spots in the Bay of Biscay and Celtic Sea. Marine Geophysical Research 2018, 39, 169–181. [Google Scholar] [CrossRef]
- Evangelos, A.; Snellen, M.; Simons, D.; Siemes, K.; Greinert, J. Multi-angle backscatter classification and sub-bottom profiling for improved seafloor characterization. Marine Geophysical Research 2018, 39, 289–306. [Google Scholar]
- Huang, Z.; Siwabessy, J.; Cheng, H.; Nichol, S. Using multibeam backscatter data to investigate sediment-acoustic relationships. Journal of Geophysical Research: Oceans 2018, 123, 4649–4665. [Google Scholar] [CrossRef]
- Fonseca, L.; Calder, B. Geocoder: An efficient Backscatter map constructor. An Efficient Backscatter Map Constructor. [Online]. 2005. [Google Scholar]
- Anderson, J.T.; Holliday, D.V.; Kloser, R.; Reid, D.G.; Simard, Y. Acoustic seabed classification: current practice and future directions. ICES Journal of Marine Science 2008, 65, 1004–1011. [Google Scholar] [CrossRef]
- Chakraborty, B.; Kodagali, V.; Baracho, J. Sea- Using Multibeam Echo-Sounding Angular Backscatter floor classification Data: A Real-Time Approach Employing Hybrid Neural Network Architecture. IEEE Journal of Oceanic Engineering 2003, 28. [Google Scholar] [CrossRef]
- Van Komen, D.F.; Neilsen, T.B.; Knobles, D.P.; Badiey, M. A feedforward neural network for source range and ocean seabed classification using time-domain features. Proceedings of meetings on acoustics 2019, 36. [Google Scholar]
- Van Komen, D.F.; Neilsen, T.B.; Knobles, D.P. A convolutional neural network for source range and ocean seabed classification using pressure time-series. Proceedings of meetings on acoustics; 2019; 36. [Google Scholar]
- Van Komen, D.F.; Neilsen, T.B.; Howarth, K.; Knobles, D.P.; Dahl, P.H. Seabed and range estimation of impulsive time series using a convolutional neural network. The Journal of the Acoustical Society of America 2020, 147. [Google Scholar] [CrossRef]
- Frederick, C.; Villar, S.; Michalopoulou, Z.-H. Seabed classification using physics-based modelling and machine learning. The Journal of the Acoustical Society of America 2020, 148. [Google Scholar]
- Cui, X.; Liu, H.; Fang, M.; Ai, B.; Ma, D.; Yang, F. Seafloor habitat mapping using multibeam bathymetric and backscatter intensity multi-features SVM classification framework. Applied acoustics 2021, 174. [Google Scholar] [CrossRef]
- Cui, X.; Yang, F.; Wang, X.; Ai, B.; Luo, Y.; Ma, D. Deep learning model for seabed sediment classification based on fuzzy ranking feature optimization. Marine Geology 2021, 432. [Google Scholar] [CrossRef]
- Zhu, Z.; Cui, X.; Zhang, K.; Ai, B.; Shi, B.; Yang, F. DNN-based seabed classification using differently weighted MBES multifeatures. Marine Geology 2021, 438. [Google Scholar] [CrossRef]
- Kushnir, U. ; Frid VSpectral Acoustic Fingerprints of Sand Sandstone Sea Bottoms, J. Mar. Sci. Eng. 2022, 10, 1923. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. ed; Springer, 2009. [Google Scholar]
- Steinbuch, L.; Brus, D.J.; Heuvelink, G.B.M. Mapping the probability of ripened subsoils using Bayesian logistic regression with informative priors. Geoderma 2018, 316, 56–69. [Google Scholar] [CrossRef]
- Tynan, C.T.; Ainley, D.G.; Barth, J.A.; Cowles, T.J.; Pierce, S.D.; Spear, L.B. Cetacean distributions relative to ocean processes in the northern California Current System. Deep-Sea Research II 2005, 52, 145–167. [Google Scholar] [CrossRef]
- Singh, S.; Rao, M.J.; Baranval, N.K.; Kumar, K.V.; Kumar, Y.V. Geoenvironment factors guided coastal urban growth prospect (UGP) delineation using heuristic and machine learning models. Ocean and Coastal Management 2023, 236, 106496. [Google Scholar] [CrossRef]
- Maxwell, D.L.; Stelzenmüller, V.; Eastwood, P.D.; Rogers, S.I. Modelling the spatial distribution of plaice (Pleuronectes platessa), sole (Solea solea) and thornback ray (Raja clavata) in UK waters for marine management and planning. Journal of Sea Research 2009, 61, 258–267. [Google Scholar] [CrossRef]
- Zhang, T.; Yan, L.; Han, G.; Peng, Y. Fast and Accurate Underwater Acoustic Horizontal Ranging Algorithm for an Arbitrary Sound-Speed Profile in the Deep Sea. IEEE internet of things journal 2022, 9, 755–769. [Google Scholar] [CrossRef]
- McCormack, B.; Borrelli, M. ShallowWater Object Detection, Classification, and Localization via Phase-Measured, Bathymetry-Mode Backscatter. Remote Sens. 2023, 15, 1685. [Google Scholar] [CrossRef]
- Raja, N.B.; Cicek, I.C.; Turkoglu, N.; Aydin, O.; Kawasaki, A. Landslide susceptibility mapping of the Sera River Basin using logistic regression model. Nat Hazards 2017, 85, 1323–1346. [Google Scholar] [CrossRef]
- Yeasin, Md.; Haldar, D.; Kumar, S.; Kumar Paul, R.K.; Ghosh, S. Machine Learning Techniques for Phenology Assessment of Sugarcane Using Conjunctive SAR and Optical Data. Remote Sens. 14, 3249. [Google Scholar] [CrossRef]

| Site: | Site 1 | Site 2 | Site 3 | Site 4 |
|---|---|---|---|---|
| Soil Type | Sand | Sand | Sandstone | Sandstone |
| Depth | 26m | 26m | 33m | 33m |
| Transducer depth | 1m | 1m | 1m | 1m |
| Transmission power | -18dB | -18dB | -18dB | -18dB |
| Water Sound Velocity [m/s] | 1530 | 1530 | 1530 | 1530 |
| Recorded Signal duration [ms] | 100 | 100 | 100 | 100 |
| a | |||
| Actual | Predicted rock | Predicted sand | |
| Rock & Sand | 450 | 137 | 313 |
| Rock | 150 | 133 | 17 |
| Sand | 300 | 4 | 296 |
| b | |||
| Actual | Predicted rock | Predicted sand | |
| Rock & Sand | 150 | 55 | 95 |
| Rock | 50 | 48 | 2 |
| Sand | 100 | 7 | 93 |
| c | |||
| Actual | Predicted rock | Predicted sand | |
| Rock & Sand | 450 | 138 | 312 |
| Rock | 150 | 134 | 16 |
| Sand | 300 | 4 | 296 |
| d | |||
| Actual | Predicted rock | Predicted sand | |
| Rock & Sand | 150 | 39 | 111 |
| Rock | 50 | 37 | 13 |
| Sand | 100 | 2 | 98 |
| Relative training set size | 1.64 | 2.05 | 2.45 | 2.86 | 3.27 | 3.68 | 4.09 |
| Maximal accuracy over the verification set | 67.33 | 74.67 | 84.67 | 84.67 | 84.67 | 89.33 | 94.00 |
| Maximal accuracy over training set | 87.67 | 96.00 | 95.56 | 96.83 | 96.11 | 95.06 | 95.33 |
| Number of iterations to achieve maximal accuracy over both sets | 20 | 90 | 120 | 160 | 160 | 220 | 210 |
| Regularization parameter for maximal accuracy | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
