Góngora, C.E.; Tapias, J.; Jaramillo, J.; Medina, R.; González, S.; Restrepo, T.; Casanova, H.; Benavides, P. A Novel Caffeine Oleate Formulation as an Insecticide to Control Coffee Berry Borer, Hypothenemus hampei, and Other Coffee Pests. Agronomy2023, 13, 1554.
Góngora, C.E.; Tapias, J.; Jaramillo, J.; Medina, R.; González, S.; Restrepo, T.; Casanova, H.; Benavides, P. A Novel Caffeine Oleate Formulation as an Insecticide to Control Coffee Berry Borer, Hypothenemus hampei, and Other Coffee Pests. Agronomy 2023, 13, 1554.
Góngora, C.E.; Tapias, J.; Jaramillo, J.; Medina, R.; González, S.; Restrepo, T.; Casanova, H.; Benavides, P. A Novel Caffeine Oleate Formulation as an Insecticide to Control Coffee Berry Borer, Hypothenemus hampei, and Other Coffee Pests. Agronomy2023, 13, 1554.
Góngora, C.E.; Tapias, J.; Jaramillo, J.; Medina, R.; González, S.; Restrepo, T.; Casanova, H.; Benavides, P. A Novel Caffeine Oleate Formulation as an Insecticide to Control Coffee Berry Borer, Hypothenemus hampei, and Other Coffee Pests. Agronomy 2023, 13, 1554.
Abstract
Coffee berry borer (CBB), Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae), is the pest that causes the most economic damage to coffee crops. Chemical control of this insect is based on the use of insecticides that can affect the environment and nontarget organisms. Despite the fact that caffeine has shown potential as an insecticide, a caffeine-based product for field use is currently not available on the market. As a new alternative to control CBB and other coffee pests, such as Monalonion velezangeli, a caffeine-oleate was developed. The caffeine oleate formulation showed laboratory efficacy by causing mortality of more than 90% of CBB adults in preventive tests in which the insecticide was sprayed prior to insect attack on the coffee fruits. In the curative tests, in which spraying occurred after CBB infested the fruits, the formulation caused 77% mortality of the insects. Under controlled field conditions, the product kept CBB infestation below 20%, reducing the number of fruits attacked by the insect by up to 70%. In addition, no phytotoxic effects were observed in coffee plants. The insecticide was also effective against M. velezangeli causing 100% mortality. A caffeine oleate formulation that could be part of a strategy for integrated CBB management as well as other pests of coffee was developed. The components of the insecticide are food grade; the product would provide greater security to the coffee ecosystem and coffee growers.
Keywords
Coffee berry borer; caffeine; oleic acid, kaolin; new insecticide, infestation.
Subject
Biology and Life Sciences, Agricultural Science and Agronomy
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.