Submitted:
10 May 2023
Posted:
11 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Germination and Plant-Based Beverages Preparation
2.3. Fermentation of Probiotic Beverage
2.4. Analytical Methods
2.4.1. Protein, fat, pH
2.4.2. Fatty Acids Content (FAC)
2.4.3. Organic Acids Content
2.4.4. Volatile Compounds
2.4.5. Total and Individual Content of Phenolic Compounds
2.4.5.1. The Total Phenolic Content
2.4.5.2. Total flavonoid content
2.4.5.3. Individual Polyphenolic Compounds
2.4.6. Antioxidant Activity
2.4.6.1. Determination of 2,2-diphenyl-1-picrylhydrazyl Radical Scavenging Activity
2.4.6.2. ABTS Radical Scavenging Activity
2.4.7. Determination of the Number of Lactic Bacteria in Fermented Products
2.4.8. Total Alkaloids Content
2.5. Statistical Analysis
3. Results
3.1. Protein, Fat, Density, and pH
3.2. Fatty Acids Content
3.3. Organic Acids Content
3.4. Volatile Compounds
| Sample | Identified compounds | Match factor |
Concentration in volatile fraction, by normalization, % | sd |
|---|---|---|---|---|
| Lupine | ||||
| Lupine germinated | astaxanthin | 415 | 3.2 | ±0.08 |
| Lupine fermented | dl-mevalonic acid lactone | 836 | 0.3 | ±0.01 |
| Lupine germinated fermented | dl-mevalonic acid lactone | 807 | 3.7 | ±0.10 |
| Chickpea | astaxanthin | 426 | 0.4 | ±0.01 |
| Chickpea germinated | - | |||
| Chickpea fermented | Thymine | 824 | 1.9 | ±0.02 |
| Chickpea germinated fermented | dl-mevalonic acid lactone | 821 | 3.2 | ±0.08 |
| Lupine | Ornithine | 826 | 60.7 | ±0.75 |
| Lupine germinated | Catechol | 881 | 6.5 | ±0.12 |
| dl-mevalonic acid lactone | 785 | 1.0 | ±0.02 | |
| 2-oxo-valeric acid | 786 | 16.2 | ±0.24 |
3.5. Total and Individual Content of Phenolic Compounds
3.5.1. The Total Phenolic Content
| Sample | Total phenolic content | Total flavonoids |
|---|---|---|
| mg GAE/mL | mg QE/mL | |
| Lupine | 8.60±0.33 b | 1.23±0.08 c |
| Lupine germinated | 8.92±0.08 b | 4.24±0.26 b |
| Lupine fermented | 11.91±0.63 a | 3.49±0.61 b |
| Lupine germinated fermented | 12.81±0.48 a | 6.55±0.10 a |
| Chickpea | 2.00±0.56 c | 0.26±0.07 c |
| Chickpea germinated | 3.02±0.29 c | 2.83±0.35 b |
| Chickpea fermented | 6.22±0.22 b | 2.62±0.22 b |
| Chickpea germinated fermented | 10.22±0.53 a | 3.51±0.14 a |
| Oat | 2.26±0.05 a | 1.19±0.31 a |
| Oat fermented | 2.33±0.11 a | 1.22±0.18 a |
3.5.2. Total Flavonoid Content
3.5.3. Individual Polyphenolic Compounds
| Sample mg/100mL |
L | LG | LF | LGF | C | CG | CF | CGF | O | OF |
|---|---|---|---|---|---|---|---|---|---|---|
| Caffeic acid | 38.07±5.67a | nd | nd | nd | nd | 215.7±21a | nd | nd | nd | nd |
| Chlorogenic acid | 0.95±0.18b | 1.62±0.41a | nd | 0.94±0,05b | 0.73±0.08b | 10.92±1.02a | nd | nd | nd | 3.21±0.44a |
| trans-p-cumaric acid | 4.19±1.14a | nd | nd | nd | 3.45±0.54a | nd | nd | nd | 136.57±8.21a | 28.35±4.55b |
| Ferulic acid | 22.67±3.45a | nd | nd | nd | nd | nd | nd | nd | 125.51±8.21a | 52.29±6.22b |
| Salicylic acid | nd | 4.87±1.2b | 4.48±1.11b | 9.35±2.08a | 10.61±2.24b | 17.42±2.12a | 3.57±1.12c | 10.03±1.24b | 33.21±5.54b | 65.5±8.44a |
| Amarogentin | nd | nd | nd | nd | nd | 1.02±0.05a | 0.71±0.14a | nd | nd | nd |
| Apigenin | nd | nd | nd | 1.49±0.26a | nd | 0.63±0.03b | 2.04±0.36a | 0.61±0.04b | 3.45±0.54a | 0.67±0.12b |
| Carnosol | 0.14±0.02a | 0.12±0.02a | nd | nd | 0.24±0.04a | nd | 0.16±0.03a | nd | nd | 0.15±0.03a |
| Chrysine | nd | 5.81±0.84a | nd | nd | 3.32±1.05b | 3.32±0.4b | 16.14±2.05a | nd | nd | 5.26±0.22a |
| Salicin | nd | nd | nd | nd | nd | 702.92±23.21a | 567.79±42.02b | nd | nd | nd |
| Luteolin-7-O-glucosid | nd | nd | nd | nd | nd | nd | 0.2±0.02a | nd | nd | nd |
| Myricetin | 893.5 ±182.35c |
1476.31 ±198.27b |
568.69 ±0.87c |
2634.69 ±248.04a |
3704.52 ±142.2a |
1606.85 ±105.32c |
1352.27 ±25.01d |
1994.24 ±35.21 b |
1897.68 ±24.15a |
947.7 ±22.66b |
| Naringenin | nd | 0.38±0.08a | nd | nd | 0.59±0.21b | 0.47±0.15b | 16.57±2.54a | 14.22±0.51a | nd | 0.50±0.03a |
| Rutin | nd | nd | 1.08±0.57a | nd | 0.95±0.45a | nd | nd | nd | 0.83±0.05b | 1.93±0.22a |
| Vitexin | nd | nd | 2.08±0.33a | 1.04±0.14a | nd | 0.37±0.05a | nd | nd | nd | nd |
| Vanillin | nd | nd | nd | nd | 55.08±5.3a | 41.97±6.27b | nd | nd | 157.38±6.88a | nd |
3.6. Antioxidant Activity
3.6.1. Determination of DPPH Scavenging Activity
3.6.2. ABTS Radical Scavenging Activity
3.7. Determination of the Number of Lactic Bacteria in Fermented Products
| Sample |
Fermented log CFU/mL |
Germinated fermented log CFU/mL |
| Lupine | 6.46±0.25a | 8.16±0.35b |
| Chickpea | 7.69±0.36a | 7.85±0.48a |
| Oat | 7.32±0.45 | - |
3.8. Determination of Total Alkaloids in Lupine Seeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vestergren, S.; Uysal, M.S. Beyond the Choice of What You Put in Your Mouth: A Systematic Mapping Review of Veganism and Vegan Identity. Front Psychol 2022, 13, 848434. [Google Scholar] [CrossRef] [PubMed]
- Oghbaei, M.; Prakash, J. Effect of Primary Processing of Cereals and Legumes on Its Nutritional Quality: A Comprehensive Review. Cogent Food Agric 2016, 2(1), 1136015. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J Food Sci Technol 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Aboulfazli, F.; Shori, A.B.; Baba, A.S. Effects of the Replacement of Cow Milk with Vegetable Milk on Probiotics and Nutritional Profile of Fermented Ice Cream. LWT - Food Science and Technology 2016, 70, 261–270. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Casale, M.; Paini, M.; Casazza, A.A.; Lanteri, S.; Perego, P. Production of a Novel Fermented Milk Fortified with Natural Antioxidants and Its Analysis by NIR Spectroscopy. LWT 2015, 62, 376–383. [Google Scholar] [CrossRef]
- Prado, F.C.; Parada, J.L.; Pandey, A.; Soccol, C.R. Trends in Non-Dairy Probiotic Beverages. Food Research International 2008, 41, 111–123. [Google Scholar] [CrossRef]
- Sharma, P.; Trivedi, N.; Gat, Y. Development of Functional Fermented Whey–Oat-Based Product Using Probiotic Bacteria. 3 Biotech 2017, 7, 272. [Google Scholar] [CrossRef]
- Valero-Cases, E.; Cerdá-Bernad, D.; Pastor, J.J.; Frutos, M.J. Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients 2020, 12, 1666. [Google Scholar] [CrossRef]
- Ignat, M.V.; Salanţă, L.C.; Pop, O.L.; Pop, C.R.; Tofană, M.; Mudura, E.; Coldea, T.E.; Borşa, A.; Pasqualone, A. Current Functionality and Potential Improvements of Non-Alcoholic Fermented Cereal Beverages. Foods 2020, 9, 1031. [Google Scholar] [CrossRef]
- Molin, G. The Role of Lactobacillus plantarum in Foods and in Human Health. In Handbook of Fermented Functional Foods; Edward R. Farnworth, Ed.; CRC Press, 2003; pp. 305–333. [Google Scholar]
- Copolovici, D.; Bungau, S.; Boscencu, R.; Tit, D.M.; Copolovici, L. The Fatty Acids Composition and Antioxidant Activity of Walnut Cold Press Oil. Revista de Chimie 2017, 68, 507–509. [Google Scholar] [CrossRef]
- Attard, E. A Rapid Microtitre Plate Folin-Ciocalteu Method for the Assessment of Polyphenols. Open Life Sci 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Criste, A.; Urcan, A.C.; Bunea, A.; Pripon Furtuna, F.R.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic Biol Med 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Criste, A.; Copolovici, L.; Copolovici, D.; Kovacs, M.; Madden, R.H.; Corcionivoschi, N.; Gundogdu, O.; Berchez, M.; Cristina Urcan, A. Determination of Changes in the Microbial and Chemical Composition of Taga Cheese during Maturation. PLoS One 2020, 15(12), e0242824. [Google Scholar] [CrossRef] [PubMed]
- Sreevidya, N.; Mehrotra, S. Spectrophotometric Method for Estimation of Alkaloids Precipitable with Dragendorff’s Reagent in Plant Materials. J AOAC Int 2003, 86, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Carulla, J.E.; Kreuzer, M.; Machmüller, A.; Hess, H.D. Supplementation of Acacia Mearnsii Tannins Decreases Methanogenesis and Urinary Nitrogen in Forage-Fed Sheep. Aust J Agric Res 2005, 56, 961. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and Vegetables, as a Source of Nutritional Compounds and Phytochemicals: Changes in Bioactive Compounds during Lactic Fermentation. Food Research International 2018, 104, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, M.; Subba Rao, M.V.S.S.T.; Muralikrishna, G. Carbohydrates and Their Degrading Enzymes from Native and Malted Finger Millet (Ragi, Eleusine Coracana, Indaf-15). Food Chem 2000, 69, 175–180. [Google Scholar] [CrossRef]
- Fritsch, C.; Vogel, R.F.; Toelstede, S. Fermentation Performance of Lactic Acid Bacteria in Different Lupin Substrates-Influence and Degradation Ability of Antinutritives and Secondary Plant Metabolites. J Appl Microbiol 2015, 119, 1075–1088. [Google Scholar] [CrossRef]
- Kasprowicz-Potocka, M.; Zaworska, A.; Gulewicz, P.; Nowak, P.; Frankiewicz, A. The Effect of Fermentation of High Alkaloid Seeds of Lupinus Angustifolius Var. Karo by Saccharomyces Cerevisieae, Kluyveromyces Lactis, and Candida Utilis on the Chemical and Microbial Composition of Products. J Food Process Preserv 2018, 42, e13487. [Google Scholar] [CrossRef]
- Klupsaite, D.; Juodeikiene, G.; Zadeike, D.; Bartkiene, E.; Maknickiene, Z.; Liutkute, G. The Influence of Lactic Acid Fermentation on Functional Properties of Narrow-Leaved Lupine Protein as Functional Additive for Higher Value Wheat Bread. LWT - Food Science and Technology 2017, 75, 180–186. [Google Scholar] [CrossRef]
- Walther, B.; Schmid, A. Effect of Fermentation on Vitamin Content in Food. In Fermented Foods in Health and Disease Prevention; Academic Press, 2017; pp. 131–157. [Google Scholar]
- Kaźmierczak-Siedlecka, K.; Daca, A.; Folwarski, M.; Witkowski, J.M.; Bryl, E.; Makarewicz, W. The Role of Lactobacillus Plantarum 299v in Supporting Treatment of Selected Diseases. Central European Journal of Immunology, 2020, 45, 488–493. [Google Scholar] [CrossRef] [PubMed]
- El Hag, M.E.; El Tinay, A.H.; Yousif, N.E. Effect of Fermentation and Dehulling on Starch, Total Polyphenols, Phytic Acid Content and in Vitro Protein Digestibility of Pearl Millet. Food Chem 2002, 77, 193–196. [Google Scholar] [CrossRef]
- Osman, M.A. Effect of Traditional Fermentation Process on the Nutrient and Antinutrient Contents of Pearl Millet during Preparation of Lohoh. Journal of the Saudi Society of Agricultural Sciences 2011, 10. [Google Scholar] [CrossRef]
- Pranoto, Y.; Anggrahini, S.; Efendi, Z. Effect of Natural and Lactobacillus plantarum Fermentation on In-Vitro Protein and Starch Digestibilities of Sorghum Flour. Food Biosci 2013, 2, 46–52. [Google Scholar] [CrossRef]
- Mridula, D.; Sharma, M. Development of Non-Dairy Probiotic Drink Utilizing Sprouted Cereals, Legume and Soymilk. LWT 2015, 62, 482–487. [Google Scholar] [CrossRef]
- Lopes, M.; Pierrepont, C.; Duarte, C.M.; Filipe, A.; Medronho, B.; Sousa, I. Legume Beverages from Chickpea and Lupin, as New Milk Alternatives. Foods 2020, 9, 1458. [Google Scholar] [CrossRef] [PubMed]
- Kavas, N. Yogurt-like Product from Lupine (Lupinus Albus L.) Milk as an Alternative to Dairy Products. Foods and Raw Materials 2022, 377–385. [Google Scholar] [CrossRef]
- Chavan, M.; Gat, Y.; Harmalkar, M.; Waghmare, R. Development of Non-Dairy Fermented Probiotic Drink Based on Germinated and Ungerminated Cereals and Legume. LWT 2018, 91, 339–344. [Google Scholar] [CrossRef]
- Ferchichi, N.; Toukabri, W.; Vrhovsek, U.; Nouairi, I.; Angeli, A.; Masuero, D.; Mhamdi, R.; Trabelsi, D. Proximate Composition, Lipid and Phenolic Profiles, and Antioxidant Activity of Different Ecotypes of Lupinus Albus, Lupinus Luteus and Lupinus Angustifolius. Journal of Food Measurement and Characterization 2021, 15, 1241–1257. [Google Scholar] [CrossRef]
- Madurapperumage, A.; Tang, L.; Thavarajah, P.; Bridges, W.; Shipe, E.; Vandemark, G.; Thavarajah, D. Chickpea (Cicer Arietinum L.) as a Source of Essential Fatty Acids – A Biofortification Approach. Front Plant Sci 2021, 12, 734980. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, O.; Kahala, M.; Marsol-Vall, A.; Blasco, L.; Järvenpää, E.; Rosenvald, S.; Virtanen, M.; Tarvainen, M.; Yang, B. Impact of Lactic Acid Fermentation on Sensory and Chemical Quality of Dairy Analogues Prepared from Lupine (Lupinus Angustifolius L.) Seeds. Food Chem 2021, 346, 128852. [Google Scholar] [CrossRef] [PubMed]
- Mack, D.R.; Ahrne, S.; Hyde, L.; Wei, S.; Hollingsworth, M.A. Extracellular MUC3 Mucin Secretion Follows Adherence of Lactobacillus Strains to Intestinal Epithelial Cells in Vitro. Gut 2003, 52, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.L.; Molin, G.; Jeppsson, B.; Nobaek, S.; Ahrne, S.; Bengmark, S. Administration of Different Lactobacillus Strains in Fermented Oatmeal Soup: In Vivo Colonization of Human Intestinal Mucosa and Effect on the Indigenous Flora. Appl Environ Microbiol 1993, 59, 15–12. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, S.C.Q.; Taveira, M.; Cabrita, A.R.J.; Fonseca, A.J.M.; Valentão, P.; Andrade, P.B. European Marketable Grain Legume Seeds: Further Insight into Phenolic Compounds Profiles. Food Chem 2017, 215, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Kalefetoğlu Macar, T.; Macar, O.; İnci Mart, D. Variability in Some Biochemical and Nutritional Characteristics in Desi and Turkish Kabuli Chickpea (Cicer Arietinum L.) Types. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 2017, 13, 677–680. [Google Scholar] [CrossRef]
- Farag, M.A.; Khattab, A.R.; Maamoun, A.A.; Kropf, M.; Heiss, A.G. UPLC-MS Metabolome Based Classification of Lupinus and Lens Seeds: A Prospect for Phyto-Equivalency of Its Different Accessions. Food Research International 2019, 115, 379–392. [Google Scholar] [CrossRef]
- Vollmannova, A.; Lidikova, J.; Musilova, J.; Snirc, M.; Bojnanska, T.; Urminska, D.; Tirdilova, I.; Zetochova, E. White Lupin as a Promising Source of Antioxidant Phenolics for Functional Food Production. J Food Qual 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Milán-Noris, A.K.; Gutierrez-Uribe, J.A.; Serna-Saldivar, S.O. Influence of Soaking and Boiling on Flavonoids and Saponins of Nine Desi Chickpea Cultivars with Potential Antiproliferative Effects. Journal of Food Measurement and Characterization 2023, 1–9. [Google Scholar] [CrossRef]
- Grela, E.R.; Kiczorowska, B.; Samolińska, W.; Matras, J.; Kiczorowski, P.; Rybiński, W.; Hanczakowska, E. Chemical Composition of Leguminous Seeds: Part I—Content of Basic Nutrients, Amino Acids, Phytochemical Compounds, and Antioxidant Activity. European Food Research and Technology 2017, 243, 1385–1395. [Google Scholar] [CrossRef]
- Gupta, S.; Cox, S.; Abu-Ghannam, N. Process Optimization for the Development of a Functional Beverage Based on Lactic Acid Fermentation of Oats. Biochem Eng J 2010, 52, 199–204. [Google Scholar] [CrossRef]
- Struţi, D.I.; Bunea, A.; Pop, I.M.; Păpuc, T.A.; Mierliţă, D.P. The Influence of Dehulling on the Nutritional Quality of Lupine Seeds (Lupinus Albus L.) and the Effect of Their Use in the Feed of Laying Quails on the Live Performance and Quality of Eggs. Animals 2021, 11, 2898. [Google Scholar] [CrossRef] [PubMed]
- Linnemann, A.R.; Dijkstra, D.S. Toward Sustainable Production of Protein-Rich Foods: Appraisal of Eight Crops for Western Europe. Part I. Analysis of the Primary Links of the Production Chain. Crit Rev Food Sci Nutr 2002, 42, 377–401. [Google Scholar] [CrossRef] [PubMed]
- BfR - Bundesinstitut für Risikobewertung Risk Assessment of the Occurrence of Alkaloids in Lupin Seeds. BfR Opinio 2017.
| Sample | Protein | Fat | Density | pH |
| % | % | |||
| Lupine | 5.63 | 1.99 | 39.96 | 8.28 |
| Lupine germinated | 2.93 | 1.27 | 27.03 | 5.97 |
| Lupine fermented | 2.54 | 1.17 | 23.11 | 4.59 |
| Lupine germinated fermented | 2.42 | 1.18 | 21.91 | 4.99 |
| Chickpea | 3.12 | 2.09 | 28.36 | 8.02 |
| Chickpea germinated | 2.52 | 1.38 | 22.78 | 7.29 |
| Chickpea fermented | 1.87 | 1.13 | 16.26 | 4.43 |
| Chickpea germinated fermented | 2.36 | 1.01 | 21.42 | 6.24 |
| Oat | 3.79 | 0.62 | 36.42 | 8.07 |
| Oat fermented | 2.82 | 0.71 | 26.37 | 5.26 |
| Lauric acid |
Miristic acid | Palmitoleic acid | Palmitic acid |
Margaric acid |
Linoleic acid |
Elaidic acid |
Oleic acid |
Vaccenic acid | Stearic acid |
|
|---|---|---|---|---|---|---|---|---|---|---|
| Lupine (L) | 6.50±0.77a | 1.07±0.08a | 0.23±0.04 a | 22.43±1.87cd | nd | 12.97±1.18bc | 28.69±3.08a | 21.73±1.35 b | 2.65±0.29 bc | 1.51±1.88 a |
| Lupine germinated (LG) | 5.71±0.86a | 1.02±0.22a | 0.32±0.08 a | 25.44±2.72bc | nd | 17.20±1.89b | 34.68±7.41 a | 24.62±1.56 b | 3.28±0.55 bc | 3.25±0.35 a |
| Lupine fermented (LF) | 5.63±1.01a | 1.33±0.41a | 0.40±0.09 a | 30.94±3.29ab | 0.27±0.01a | 22.75±2.32a | 27.66±0.44 a | 52.38±8.11 a | 4.77±0.57 a | 3.93±0.45 a |
| Lupine germinated fermented (LGF) | 5.36±0.65a | 1.19±0.46a | 0.40±0.09 a | 17.29±1.40d | 0.04±0.02b | 10.35±0.87c | 14.94±0.01 b | 21.06±2.80 b | 1.90±0.21 c | 2.53±0.21 a |
| Chickpea (C) | 5.95±0.56b | 1.11±0.29a | 0.36±0.02 a | 19.91±1.33ab | nd | 9.41±0.68c | 12.42±2.63 bc | 11.67±0.93 ab | 0.88±0.09 c | 2.67±0.21 c |
| Chickpea germinated (CG) | 6.23±0.30b | 1.47±0.32a | 0.37±0.09 a | 14.75±7.99b | 0.59±0.09a | 37.26±2.24a | 32.09±4.32 a | 26.30±7.73 a | 2.60±0.02 a | 4.19±0.30 a |
| Chickpea fermented (CF) | 5.62±0.43b | 0.89±0.11a | 0.39±0.03 a | 9.42±0.01bc | 0.20±0.08b | 3.10±0.30d | 3.83±0.25 cd | 2.29±0.03 bc | 0.20±0.07 d | 1.73±0.08 d |
| Chickpea germinated fermented (CGF) | 8.02±0,32a | 1.27±0.05a | 0.44±0.04 a | 27.49±2.09a | 0.29±0.20ab | 33.50±2.09ab | 20.81±6.11 b | 21.16±8.70 a | 1.96±0.16 b | 3.36±0.26 b |
| Oat (O) | 5.21±0.46a | 0.97±0.21a | 0.17±0.24 a | 33.59±2.89 a | nd | 35.40±2.93b | 16.84±8.62 a | 16.47±5.93 a | 1.14±0.06 a | 2.42±0.22 a |
| Oat fermented (OF) | 4.58±0.64a | 0.82±0.02a | 0.33±0.05 a | 19.95±1.83 a | nd | 66.02±5.36a | 13.80±0.82 a | 0.55±0.01 b | 0.13±0.05 b | 0.23±0.03 b |
| SCFA | LCFA | SFA | MUFA | PUFA | UFA | SFA/UFA | PUFA/MUFA | |
| Lupine | 0.06 | 0.25 | 0.32 | 0.53 | 0.13 | 0.66 | 0.48 | 0.24 |
| Lupine germinated | 0.06 | 0.30 | 0.35 | 0.63 | 0.17 | 0.80 | 0.44 | 0.27 |
| Lupine fermented | 0.06 | 0.36 | 0.42 | 0.85 | 0.23 | 1.08 | 0.39 | 0.27 |
| Lupine germinated fermented | 0.05 | 0.21 | 0.26 | 0.38 | 0.10 | 0.49 | 0.54 | 0.27 |
| Chickpea | 0.06 | 0.24 | 0.30 | 0.25 | 0.09 | 0.35 | 0.85 | 0.37 |
| Chickpea germinated | 0.06 | 0.21 | 0.27 | 0.61 | 0.37 | 0.99 | 0.28 | 0.61 |
| Chickpea fermented | 0.06 | 0.12 | 0.18 | 0.07 | 0.03 | 0.10 | 1.82 | 0.46 |
| Chickpea germinated fermented | 0.08 | 0.32 | 0.40 | 0.44 | 0.33 | 0.78 | 0.52 | 0.75 |
| Oat | 0.05 | 0.37 | 0.42 | 0.35 | 0.66 | 1.01 | 0.42 | 1.91 |
| Oat fermented | 0.05 | 0.40 | 0.44 | 0.15 | 0.35 | 0.50 | 0.88 | 2.39 |
| Sample | Lactic acid mg/100 ml |
Citric acid mg/100 ml |
Fumaric acid mg/100 ml |
|---|---|---|---|
| Lupine | 1.16±0.18c | nd | nd |
| Lupine germinated | 396.38±15.08a | nd | nd |
| Lupine fermented | 4.19±0.22c | 405.43±26.18a | 6.33±1.27 |
| Lupine germinated fermented | 117.94±6.27b | 0.07±0.01b | nd |
| Chickpea | 136.42±6.48b | nd | nd |
| Chickpea germinated | 153.80±5.43a | nd | nd |
| Chickpea fermented | 29.13±1.28c | 71.70±5.14 | nd |
| Chickpea germinated fermented | 29.56±2.02c | nd | nd |
| Oat | 1.13±0.20b | 7.79±2.12b | 0.46±0.05 |
| Oat fermented | 154.91±6.32a | 108.56±11.18a | nd |
| Sample | DPPH radical scavenging activity | ABTS radical scavenging activity |
| mg Trolox equivalent/mL | mg Trolox equivalent/mL | |
| Lupine (L) | 1.37±0.17 a | 1.09±0.14 a |
| Lupine germinated (LG) | 1.71±0.26 a | 1.03±0.17 a |
| Lupine fermented (LF) | 1.65±0.32 a | 1.07±0.22 a |
| Lupine germinated fermented (LGF) | 1.63±0.04 a | 1.29±0.04 a |
| Chickpea (C) | 0.56±0.01 c | 0.54±0.11 b |
| Chickpea germinated (CG) | 1.59±0.02 a | 0.92±0.13 a |
| Chickpea fermented (CF) | 0.66±0.05 b.c | 0.32±0.02 b |
| Chickpea germinated fermented (CGF) | 0.69±0.08 b | 0.32±0.09 b |
| Oat (O) | 0.62±0.01 a | 0.28±0.01 a |
| Oat fermented (OF) | 0.42±0.02 b | 0.29±0.07 a |
| Sample | % of alkaloid content |
|---|---|
| Soaked lupine | 0.06±0.02 |
| Dehulled lupine | 0.03±0.01 |
| Soaking water | 0.002±0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
