Submitted:
02 May 2023
Posted:
03 May 2023
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Regional Setting
3. Materials and Methods
4. Results and interpretation
4.1. Ages, sedimentation rates and resolution
4.2. Mire vegetation development based on botanical composition of the peat
4.3. Lake development based on diatom data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Lu, M.-M. The East Asian winter monsoon. In The Global Monsoon System: Research and Forecast; Chang, C.-P., Kuo, H.-C., Lau, N.-C., Johnson, R. H., Wang, B., Whe, M., Eds.; World Scientific Publishing: Suite, USA, 2017; pp. 51–61. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Hou, X. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment. Quaternary International 2011, 229, 67–73. [Google Scholar] [CrossRef]
- Chen, R.; Shen, J.; Li, C.; Zhang, E.; Sun,W. ; Ji, M. Mid- to late-Holocene East Asian summer monsoon variability recorded in lacustrine sediments from Jingpo Lake, Northeastern China. The Holocene 2015, 25, 454–468. [Google Scholar] [CrossRef]
- Lim, J. ; Um, I-K.; Yi, S.; Jun, C.-P. Hydroclimate change and its controlling factors during the middle to late Holocene and possible 3.7-ka climatic shift over East Asia. Quaternary Research 2022, 109, 53–64. [Google Scholar] [CrossRef]
- Park, J.; Han, J.; Jin, Q.; Bahk, J.; Yi, S. The link between ENSO-like forcing and hydroclimate variability of coastal East Asia during the Last Millennium. Scientific Reports 2017, 7, 8166. [Google Scholar] [CrossRef]
- Park, J.; Park, J.; Yi, S.; Lim, J.; Kim, J.C.; Jin, Q.; Choi, J. Holocene hydroclimate reconstruction based on pollen, XRF, and grain-size analysis and its implications for past societies of the Korean Peninsula. The Holocene 2021, 31, 1489–1500. [Google Scholar] [CrossRef]
- Steinhilber, F.; Beer, J.; Fröhlich, C. Total solar irradiance during the Holocene. Geophysical Research Letters 2009, 36, P–L19704. [Google Scholar] [CrossRef]
- Tamura, T.; Kodama, Y.; Bateman, M.D.; Saitoh, Y.; Yamaguchi, N.; Matsumoto, D. Late Holocene aeolian sedimentation in the Tottori coastal dune field, Japan Sea, affected by the East Asian winter monsoon. Quaternary International 2016, 397, 147–158. [Google Scholar] [CrossRef]
- Sakaguchi, Y. Some pollen records from Hokkaido and Sakhalin. Bulletin Department Geography University Tokyo 1983, 21, 1–17. [Google Scholar]
- Zheng, J.; Wang, W-Ch. ; Ge, Q.; Man, Zh.; Zhang, P. Precipitation variability and Extreme Events in Eastern China during the Past 1500 Years. Terr. Atmos. Ocean. Sci. 2006, 17, 579–592. [Google Scholar] [CrossRef]
- Krestov, P.V.; Barkalov, V.Yu.; Omelko, A.M.; Yakubov, V.V.; Nakamura, Yu.; Sato, K. Relic vegetation complexes in the modern refugia of Northeast Asia. Komarovskie Chtenia 2009, LVI, 5–61. (in Russian).
- Bazarova, V.B.; Klimin, M.А.; Kopoteva, T.A. Holocene dynamic of Eastern-Asia Monsoon in Lower Amur Area. Geography and Natural Resources, 2018, 39, 124–133. [Google Scholar] [CrossRef]
- Leipe, C.; Nakagawa, T.; Gotanda, K.; Müller, S.; Tarasov, P. Late Quaternary vegetation and climate dynamics at the northern limit of the East Asian summer monsoon and its regional and global-scale controls. Quaternary Science Reviews 2015, 116, 57–17. [Google Scholar] [CrossRef]
- Razjigaeva, N.G.; Ganzey, L.A.; Grebennikova, T.A.; Mokhova, L.M.; Kopoteva, T.A.; Kudryavtseva, E.P.; Belyanin, P.S.; Panichev, A.M.; Arslanov, Kh.A.; Maksimov, F.E.; Petrov, A.Yu.; Sudin, V.V.; Klimin, M.A.; Kornyushenko, T.V. Holocene mountain landscape development and monsoon variation in the southernmost Russian Far East. Boreas 2021, 50, 1043–1058. [Google Scholar] [CrossRef]
- Anderson, P.M.; Belyanina, N.I.; Belyanin, P.S.; Lozhkin, A.V. Evolution of the vegetation cover of Peter the Great By western coast in the late Pleistocene-Holocene. Russian Journal of Pacific Geology 2017, 36, 99–108. (In Russian) [Google Scholar]
- Korotky, A.M. Palynological characteristics and radiocarbon data of Late Quaternary deposits of the Russian Far East (Lower Amur Valley, Primor’ye, Sakhalin Island, Kuril Islands) In Late Quaternary Vegetation and Climate of Siberia and the Russian Far East (Palynological and Radiocarbon Database); Anderson, P.M., Lozhkin, A.V., Eds.; NESC FEB RAS: Magadan, Russia, 2002; pp. 337–356. [Google Scholar]
- Lozhkin, A.V.; Anderson, P.M.; Brown, T.A.; Grebennikova, T.A.; Korzun, J.A.; Tsigankova, V.I. Lake development and vegetation history in coastal Primor’ye: implications for Holocene climate of the southeastern Russian Far East. Boreas 2021, 50, 983–997. [Google Scholar] [CrossRef]
- Nazarova, L.B.; Razjigaeva, N.G.; Golovatyuk, L.V.; Biskaborn, B.C.; Grebennikova, T.A.; Ganzey, L.A.; Mokhova, L.M.; Diekmann, B. Reconstruction of environmental conditions in the Eastern Part of Primorsky Krai (Russian Far East) in the Late Holocene. Contemporary Problems of Ecology 2021, 14(3), 218–230. [Google Scholar] [CrossRef]
- Razjigaeva, N.G.; Ganzey, L.A.; Mokhova, L.M.; Makarova, T.R.; Panichev, A.M.; Kudryavtseva, E.P.; Arslanov, Kh.A.; Maksimov, F.E.; Starikova, A.A. Late Holocene environmental changes recorded in the deposits of paleolake of the Shkotovskoe Plateau, Sikhote-Alin Mountains, Russian Far East. Journal of Asian Earth Sciences 2017, 136, 89–101. [Google Scholar] [CrossRef]
- Razzhigaeva, N.G.; Ganzey, L.A.; Grebennikova, T.A.; Mokhova, L.M.; Kopoteva, T.A.; Kudryavtseva, E.P.; Arslanov, Kh.A.; Maksimov, F.E.; Petrov, A.Yu.; Klimin, M.A. Development of the natural environment of midlands of the Southern Sikhote-Alin recorded in the Sergeev Plateau peat bogs. Russian Journal of Pacific Geology 2019, 13, 11–28. [Google Scholar] [CrossRef]
- Razjigaeva, N.G.; Ganzey, L.A.; Grebennikova, T.A.; Kopoteva, T.A.; Klimin, M.A.; Arslanov, Kh.A.; Maksimov, F.E.; Petrov, A.Yu.; Chekryzhov, I.Yu.; Popov, N.Yu.; Panichev, A.M. Atmospheric anomaly bioindicators in peat sections on the eastern macroslope of the Sikhote-Alin Range in the Late Holocene. Russian Journal of Pacific Geology 2023, 17, 41–53. [Google Scholar] [CrossRef]
- Razzhigaeva, N.G.; Ganzey, L.A.; Grebennikova, T.A.; Kopoteva, T.A.; Mokhova, L.M.; Panichev, A.M.; Kudryavtseva, E.P.; Arslanov, Kh.A.; Maksimov, F.E.; Petrov, A.Yu.; Klimin, M.A. Environmental changes recorded in deposits of the Izyubrinye Solontsi Lake, Sikhote-Alin. Contemporary Problems of Ecology 2017, 4, 441–453. [Google Scholar] [CrossRef]
- Panichev, A.M.; Popov, V.K.; Chekrijov, I.Yu.; Golokhvast, K.S. , Seryodkin, I.V. Kudurs of paleovolcano Solontsoviy in the Tayojnaya River Basin, East Sikhote-Alin. Achievements in the Life Sciences 2012, 5, 7–28. (in Russian).
- Marchenko, N.A. Vertical gradients of meteorological elements in Primorskii krai and the possibility of extrapolation of the data of meteorological stations. Geography and Natural Resources 1993, 3, 138–143. (in Russian). [Google Scholar]
- Kulikova, G.G. Brief Manual for Botanical Analysis of Peat. MSU: Moscow, Russia, 1974. (in Russian).
- Mazei, Yu.A.; Tsyganov, A.N. Freshwater testate amoebae. KMK: Moscow, Russia, 2006. (in Russian).
- Travnikov, L.N.; Petrovich, V.M.; Shalhanova, M.S. Peat and its processed products. Methods of ash determination; Publ. of Standarts: Moscow, Russia, 1995. (in Russian) [Google Scholar]
- Gleser, Z.I.; Jousé, A.P.; Makarova, I.V.; Proshkina-Lavrenko, A.I.; Sheshukova-Poretskaya, V.S. (Eds.) Diatom algal of the USSR. Fossil and modern. Volume 1. Nauka: Leningrad, Russia, 1974; 400 p. (in Russian).
- Battarbee, R.W. Diatom analysis. In Handbook of Holocene Paleoecology and Paleohydrology; Berglund, B.E., Ed.; Wiley & Sons: London, England, 1986; pp. 527–570. [Google Scholar]
- Barinova, S.S.; Medvedeva, L.A.; Anissimova, O.V. Diversity of Algal Indicators in Environmental Assessment; Pilies Studio: Tel Aviv, Israel, 2006. (in Russian) [Google Scholar]
- Davydova, N.N. Diatoms as indicators of Holocene lake environments. Nauka: Leningrad, Russia, 1985. (In Russian).
- Kharitonov, V.G. Synopsis of diatom flora (Bacillariophyceae) of Northern Okhotsk Sea Region; NECSI FEB RAS Publ.: Magadan, Russia, 2010. (in Russian) [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. Teil 1. Naviculaceae; VEB Gustav Fischer Verlag: Jena, Austria, 1986; 876 p. [Google Scholar]
- Krammer, K. ; Lange-Bertal, Bacillariophyceae. Teil 3. Centrales, Fragilariaceae, Eunotiacaea; Gustav Fischer Verlag: Jena, Austria, 1991. 576 p. (in Germany) [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. Teil 4. Achnanthaceae. Kritische Erganzungenzu Navicula (Lineolatae) und Gomphonema; Gustav Fischer Verlag: Jena, Austria, 1991. 437 p. (in Germany) [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 2001, 4(1), 1–9. [Google Scholar]
- Ramsey, B.C. Methods for summarizing radiocarbon datasets. Radiocarbon 2017, 59(2), 1809–1833. [Google Scholar] [CrossRef]
- Reimer, P.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, B.C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; Grootes, P.M.; Guilderson, T.P.; Hajdas, I.; Heaton,T. ; Hogg, A.G. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 kcal BP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an 601 autoregressive gamma process. Bayesian Analysis 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Kopoteva, T.A.; Kuptsova, V.A. Fire in waterlogged open larch forests in the Amur R. area Bulletin NESC FEB RAS 2011, 3, 37–41. (In Russian).
- Kurina, I.V. Ecology of testate amoebae as hydrological regime indicators in oligotrophic peatlands in the southern taiga of Western Siberia. Izvestya of PSPU 2011, 25, 369–375. (in Russian).
- Mazei, Yu.A.; Tsyganov, A.N.; Mityaeva, O.A.; Babeshko, K.V. Testate amoebae in Sphagnum bogs (on the data of natural reserve «The Volga region forest-steppe»). University Proceeding. Volga Region 2013, 3, 4–18. [Google Scholar]
- Tsyganov, A.N.; Babeshko, K.V.; Malysheva, E.A.; Payne, R.J.; Mazei, Y.A.; Novenko, E.Y. Quantitative reconstruction of peatland hydrological regime with fossil testate amoebae communities. Russian Journal of Ecology 2017, 48, 191–198. [Google Scholar] [CrossRef]
- Solovieva, N.; Klimaschewski, A.; Self, A.E.; Jones, V.J.; Andrén, E.; Andreev, A.A.; Hammarlund, D.; Lepskaya, E.V.; Nazarova, L. The Holocene environmental history of a small coastal lake on the north-eastern Kamchatka Peninsula. Global Planet Change 2015, 134, 55–56. [Google Scholar] [CrossRef]
- Lepskaya, E.V.; Jewson, D.H.; Usoltseva, M.V. Aulacoseira subarctica in Kurilskoye Lake, Kamchatka: a deep, oligotrophic lake and important Pacific salmon nursery. Diatom Research 2010, 25(2), 323–335. [Google Scholar] [CrossRef]
- Buczkó, K.; Ognjanova-Rumenova, N.; Magyari, E. Taxonomy, morphology and distribution of some Aulacoseira taxa in glacial lakes in the south Carpathian region. Polish Botanical Journal 2010, 55(1), 149–163. [Google Scholar]
- van Dam, H.; Mertens, A.; Sinkeldam, J. A coded checklist and ecological indicator values of freshwater diatoms from The Netherland. Netherlands Journal of Aquatic Ecology 1994, 28, 117–133. [Google Scholar]
- Wanner, H.; Solomina, O.; Grosjean, M.; Ritz, S.P.; Jetel, M. Structure and origin of Holocene cold events. Quaternary Science Review 2011, 30, 3109–3123. [Google Scholar] [CrossRef]
- Stebich, M.; Rehfeld, K.; Schlütz, F.; Tarasov, P.E.; Liu, J.; Mingam, J. Holocene vegetation and climate dynamic of NE China based on the pollen record from Sihailongwan Maar Lake. Quaternary Science Reviews 2015, 124, 275–289. [Google Scholar] [CrossRef]
- Razjigaeva, N.G.; Ganzey, L.A.; Mokhova, L.M.; Makarova, T.R.; Kudryavtseva, E.P.; Panichev, A.M.; Arslanov, Kh.A. Climate and human impact on vegetation in the upper part of the Ussuri River basin in late Holocene, Russian Far East. Geography, Environment, Sustainability 2019, 12, 162–172. [Google Scholar] [CrossRef]
- Bazarova, V.B.; Grebennikova, T.A.; Orlova, L.A. Natural-environment dynamics within the Amur basin during the Neoglacial. Geography and Natural Resources 2014, 35(3), 275–283. [Google Scholar] [CrossRef]
- Razzhigaeva, N.G.; Ganzey, L.A.; Grebennikova, T.A.; Kopoteva, T.A.; Klimin, M.A.; Panichev, A.M.; Kudryavtseva, E.P.; Arslanov, Kh.A.; Maksimov, F.E.; Petrov, A.Yu. Paleoflood records within Sikhote-Alin foothills during last 2.2 ka. Izvestya RAS, Seriya Geograficheskaya 2019, 2, 85–99. [Google Scholar] [CrossRef]
- Ljungqvist, F.C. A new reconstruction of temperature variability in the extratropical Northern Hemisphere during the last two millennia. Geografiska Annaler 2010, 92A, 339–351. [Google Scholar] [CrossRef]
- Klimenko, V.V. Climate: unread chapter of history; MEI: Moscow, Russia, 2009. (in Russian) [Google Scholar]
- Wanner, H. , Beer J., Bütikofer J., Crowley T.J., Cubasch U., Flückiger J., Goosse H., Grosjean M., Joos F., Kaplan J.O., Küttel M., Müller S.A., Prentice I.C., Solomina O., Stocker T.F., Tarasov P., Wagner M., Widmann M. 2008. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 2008, 27, 1791–1828. [Google Scholar] [CrossRef]
- Meeker, L.D.; Mayewski, P.A. A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia. Holocene 2002, 12, 257–266. [Google Scholar] [CrossRef]
- Ignatov, M.S.; Ignatova, E.A. Moss flora of the Middle European Russia. Fontinalaceae – Amblystegiaceae; KMK Scientific Press Ltd.: Moscow, Russia, 2004; pp. 609–944. (In Russian) [Google Scholar]
- Razjigaeva, N.G.; Ganzey, L.A.; Grebennikova, T.A.; Mokhova, L.M.; Chakov, V.V.; Kopoteva, T.A.; Klimin, M.A.; Simonova, G.V. Global cooling events of the late Holocene preserved in the coastal sediments in the southern Far East of Russia. Geomorphology and Paleogeography 2023, 54, 112–130. [Google Scholar] [CrossRef]
- Nazarova, L.; Sachse, D.; Fuchs, H.G.E.; Dirksen, V.; Dirksen, O.; Syrykh, L.; Razjigaeva, N.G.; Rach, O.; Diekmann, B. Holocene evolution of a proglacial lake in southern Kamchatka, Russian Far East. Boreas 2021, 50, 1011–1026. [Google Scholar] [CrossRef]
- Fagan, B. The Little Ice Age. How climate made history 1300–1850; Basic Books: New-York, USA, 2000. [Google Scholar]
- Wanner, H.; Pfister, C.; Neukom, R. The variable European Little Ice Age. Quaternary Science Reviews 2022, 287, 107531. [Google Scholar] [CrossRef]
- Zhang, D. Historical records of climate change in China. Quaternary Science Reviews 1991, 10, 551–554. [Google Scholar] [CrossRef]
- Yang, B.; Braeuning, A.; Johnson, K.R.; Yafeng, S. General characteristics of temperature variation in China during the last two millennia. Geophysical Research Letters 2002, 29(9), 381–384. [Google Scholar] [CrossRef]
- Brooks, S.J.; Diekmann, B.; Jones, V.J.; Hammarlund, D. Holocene environmental change in Kamchatka: A synopsis. Global and Planetary Change 2015, 134, 166–174. [Google Scholar] [CrossRef]
- Kong, G.S.; Kim, K.-O.; Kim, S.-P. Characteristics of the East Asian summer monsoon in the South Sea of Korea during the Little Ice Age. Quaternary International 2013, 286, 36–44. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Lu, H.; Gu, Z.; Rioual, P.; Hao, Q.; Mackay, A.W.; Jiang, W.; Cai, B.; Xu, X.; Han, J.; Chu, G. The East Asian winter monsoon over the last 15,000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon. Quaternary Science Review 2012, 32, 131–142. [Google Scholar] [CrossRef]
- Bazarova, V.B.; Razzhigaeva, N.G.; Ganzey, L.А.; Kopoteva, T.А.; Mokhova, L.M.; Panichev, А.M.; Klimin, M.А. Pyrogenic events in the south of the Far East in the Late Pleistocene–Holocene. Geography and Natural Resources 2017, 4, 122–132. (In Russian) [Google Scholar] [CrossRef]
- Miyahara, H.; Tokanai, F.; Moriya, T.; Takeyama, M.; Sakurai, H.; Ohyama, M.; Horiuchi, K.; Hotta, H. Recurrent large-scale solar proton events before the onset of the Wolf Grand Solar Minimum. Geophysical Research Letters 2022, 49, e2021GL097201. [Google Scholar] [CrossRef]






| Lab number, LU- | Sample number | Depth, cm | 14C-Age, yr BP | Calendar age (2σ) | Sedimentation rate, mm/yr |
|---|---|---|---|---|---|
| 8838 | 10/0317 | 45–50 | 470 ± 100 | 480 ± 100 | 1.2–1.4 |
| 8839 | 20/0317 | 95–100 | 530 ± 90 | 550 ± 80 | 1.6–1.7 |
| 8840 | 30/0317 | 145–150 | 1100 ± 80 | 1030 ± 90 | 1.4–1.5 |
| 8841 | 40/0317 | 195–200 | 1220 ± 60 | 1150 ± 70 | 1.6–1.7 |
| 8842 | 50/0317 | 245–250 | 1850 ± 70 | 1780 ± 90 | 1–1.2 |
| 8843 | 58/0317 | 285–290 | 2330 ± 70 | 2380 ± 130 | 0.8–1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
