Submitted:
26 April 2023
Posted:
28 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Conceptual Framework
2.1. Determinants of Traffic Navigation App Usage
3. Methodology
3.1. Setting
3.2. Participants and Sampling Technique
3.3. Instrumentation
3.5. Data Analysis
4. Results and Findings
| AU | PLA | PEU | PU | SQ | UI | |
|---|---|---|---|---|---|---|
| AU | 0.908 | |||||
| PLA | 0.650 | 0.770 | ||||
| PEU | 0.626 | 0.560 | 0.798 | |||
| PU | 0.622 | 0.648 | 0.638 | 0.766 | ||
| SQ | 0.592 | 0.674 | 0.594 | 0.675 | 0.810 | |
| UI | 0.663 | 0.713 | 0.560 | 0.623 | 0.591 | 0.827 |
5. Discussion
6. Conclusions
6.1. Recommendations
6.2. Practical and Manegerial Implication
6.3. Theoretical Implication
6.4. Limitations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.-F.; Chen, P.-C. Applying the TAM to travelers’ usage intentions of GPS devices. Expert Syst. Appl. 2011, 38, 6217–6221. [Google Scholar] [CrossRef]
- Diliman, Q. C. (2005). Traffic impact assessment for sustainable traffic management and transportation planning in urban areas. In Proceedings of the Eastern Asia Society for Transportation Studies (Vol. 5, pp. 2342-2351).
- Noerkaisar, N.; Suharjo, B.; Yuliati, L.N. The Adoption Stages of Mobile Navigation Technology Waze App as Jakarta Traffic Jam Solution. Indep. J. Manag. Prod. 2016, 7, 914–925. [Google Scholar] [CrossRef]
- Silva, T. H., De Melo, P. O. V., Viana, A. C., Almeida, J. M., Salles, J., & Loureiro, A. A. (2013). Traffic condition is more than colored lines on a map: characterization of waze alerts. In Social Informatics: 5th International Conference, SocInfo 2013, Kyoto, Japan, November 25-27, 2013, Proceedings 5 (pp. 309-318). Springer International Publishing.
- Laor, T.; Galily, Y. In WAZE we trust? GPS-based navigation application users’ behavior and patterns of dependency. PLOS ONE 2022, 17, e0276449. [Google Scholar] [CrossRef]
- Huang, Z.; Loo, B.P.Y. Urban traffic congestion in twelve large metropolitan cities: A thematic analysis of local news contents, 2009–2018. Int. J. Sustain. Transp. 2022, 17, 592–614. [Google Scholar] [CrossRef]
- Palmiano, H.S.O., Kurokawa, T. and Sigua R.G.. (2015) Shopping centers in Metro Manila and necessity for traffic impact study, Journal of the Eastern Asia Society for Transportation Studies, Vol. 3, No. 4, 107-121.
- Chua. J. A., Blancaflor, E., Wilwayco, J. S., Dela Pena, S., Ibaan, J. I. (2021). Determining satisfaction levels among the factors influencing three mobile traffic navigation applications used by motorists in Metro Manila. Association for Computing Machinery, 92-99. 10.1145/3507524.3507540. [CrossRef]
- Yamsaengsung, S.; Papasratorn, B. Towards Improving User Interaction with Navigation Apps: an Information Quality Perspective. KnE Soc. Sci. 2018, 3, 119–131. [Google Scholar] [CrossRef]
- Braun, H., Gärtner, M., Trösterer, S., Akkermans, L. E. M., Seinen, M., Meschtscherjakov, A., & Tscheligi, M. (2019, September 21). Advanced driver assistance systems for aging drivers. Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. [CrossRef]
- Braun, H., Gärtner, M., Trösterer, S., Akkermans, L. E. M., Seinen, M., Meschtscherjakov, A., & Tscheligi, M. (2019, September 21). Advanced driver assistance systems for aging drivers. Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. [CrossRef]
- Rahman, M.; Strawderman, L.; Lesch, M.F.; Horrey, W.J.; Babski-Reeves, K.; Garrison, T. Modelling driver acceptance of driver support systems. Accid. Anal. Prev. 2018, 121, 134–147. [Google Scholar] [CrossRef]
- Voinea, G.-D.; Postelnicu, C.C.; Duguleana, M.; Mogan, G.-L.; Socianu, R. Driving Performance and Technology Acceptance Evaluation in Real Traffic of a Smartphone-Based Driver Assistance System. Int. J. Environ. Res. Public Heal. 2020, 17, 7098. [Google Scholar] [CrossRef] [PubMed]
- Voinea, G.-D.; Postelnicu, C.C.; Duguleana, M.; Mogan, G.-L.; Socianu, R. Driving Performance and Technology Acceptance Evaluation in Real Traffic of a Smartphone-Based Driver Assistance System. Int. J. Environ. Res. Public Heal. 2020, 17, 7098. [Google Scholar] [CrossRef] [PubMed]
- Peeta, S.; Ramos, J.L.; Pasupathy, R. Content of Variable Message Signs and On-Line Driver Behavior. Transp. Res. Rec. J. Transp. Res. Board 2000, 1725, 102–108. [Google Scholar] [CrossRef]
- Park, E.; Kim, K.J.; Del Pobil, A.P. An examination of psychological factors affecting drivers’ perceptions and attitudes toward car navigation systems. In IT Convergence and Security 2012; Springer: Dordrecht, The Netherlands, 2013; pp. 555–562. [Google Scholar]
- Chatterjee, K.; Mcdonald, M. Effectiveness of using variable message signs to disseminate dynamic traffic information: Evidence from field trails in European cities. Transp. Rev. 2004, 24, 559–585. [Google Scholar] [CrossRef]
- Ghazizadeh, M.; Peng, Y.; Lee, J.D.; Boyle, L.N. Augmenting the Technology Acceptance Model with Trust: Commercial Drivers’ Attitudes towards Monitoring and Feedback. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2012, 56, 2286–2290. [Google Scholar] [CrossRef]
- Larue, G.S.; Rakotonirainy, A.; Haworth, N.L.; Darvell, M. Assessing driver acceptance of Intelligent Transport Systems in the context of railway level crossings. Transp. Res. Part F: Traffic Psychol. Behav. 2015, 30, 1–13. [Google Scholar] [CrossRef]
- Roberts, S.C.; Ghazizadeh, M.; Lee, J.D. Warn me now or inform me later: Drivers' acceptance of real-time and post-drive distraction mitigation systems. Int. J. Human-Computer Stud. 2012, 70, 967–979. [Google Scholar] [CrossRef]
- Etikan, I.; Musa, S.A.; Alkassim, R.S. Comparison of Convenience Sampling and Purposive Sampling. Am. J. Theor. Appl. Stat. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Yamane, T. (1967). Statistics, an Introductory Analysis. Journal of the American Statistical Association, 60 (310), 678. [CrossRef]
- Zhou, T. Examining the critical success factors of mobile website adoption. Online Inf. Rev. 2011, 35, 636–652. [Google Scholar] [CrossRef]
- Jeong, H. (2011). An investigation of user perceptions and behavioral intentions towards the e-library. Library Collections, Acquisitions, and Technical Services, 35(2-3), 45-60.
- Prasetyo, Y.T.; Ong, A.K.S.; Concepcion, G.K.F.; Navata, F.M.B.; Robles, R.A.V.; Tomagos, I.J.T.; Young, M.N.; Diaz, J.F.T.; Nadlifatin, R.; Redi, A.A.N.P. Determining Factors Affecting Acceptance of E-Learning Platforms during the COVID-19 Pandemic: Integrating Extended Technology Acceptance Model and DeLone & McLean IS Success Model. Sustainability 2021, 13, 8365. [Google Scholar] [CrossRef]
- Diop, E.B.; Zhao, S.; Van Duy, T. An extension of the technology acceptance model for understanding travelers’ adoption of variable message signs. PLOS ONE 2019, 14, e0216007. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Kim, H.; Ohm, J.Y. Understanding driver adoption of car navigation systems using the extended technology acceptance model. Behav. Inf. Technol. 2014, 34, 741–751. [Google Scholar] [CrossRef]
- Zeng, K. C., Liu, S., Shu, Y., Wang, D., Li, H., Dou, Y., ... & Yang, Y. (2018). All your {GPS} are belong to us: Towards stealthy manipulation of road navigation systems. In 27th {USENIX} security symposium ({USENIX} security 18) (pp. 1527-1544).
- Voinea, G.-D.; Postelnicu, C.C.; Duguleana, M.; Mogan, G.-L.; Socianu, R. Driving Performance and Technology Acceptance Evaluation in Real Traffic of a Smartphone-Based Driver Assistance System. Int. J. Environ. Res. Public Heal. 2020, 17, 7098. [Google Scholar] [CrossRef]
- Cooharojananone, N., Napapruekchat, S., Puttirutwong, T., & Pongnumkul, S. (2014, November). A study of factors influencing intention to use traffic information applications on smartphones in Bangkok, Thailand. International Conference on Information Society (i-Society 2014). [CrossRef]
- Lowrie, C., Kruczkiewicz, A., McClain, S. N., Nielsen, M., & Mason, S. J. (2022). Evaluating the usefulness of VGI from Waze for the reporting of flash floods. Scientific reports, 12(1), 5268. [CrossRef]
- Khairunnisa, R., & Muthaiyah, S. (2021). Understanding Factors Influencing Continuance Intention Of Users Toward Community-Based Traffic And Navigation Application In Indonesia. Turkish Journal of Computer and Mathematics Education, 12(12), 3464-3476.
- Noerkaisar, N.; Suharjo, B.; Yuliati, L.N. The adoption stages of mobile navigation technology waze app as Jakarta traffic jam solution. Indep. J. Manag. Prod. 2016, 7, 914–925. [Google Scholar] [CrossRef]
- Yang, L.; Bian, Y.; Zhao, X.; Liu, X.; Yao, X. Drivers’ acceptance of mobile navigation applications: An extended technology acceptance model considering drivers’ sense of direction, navigation application affinity and distraction perception. Int. J. Human-Computer Stud. 2020, 145, 102507. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Dash, G.; Paul, J. CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technol. Forecast. Soc. Chang. 2021, 173, 121092. [Google Scholar] [CrossRef]
- Dash, G.; Paul, J. CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technol. Forecast. Soc. Chang. 2021, 173, 121092. [Google Scholar] [CrossRef]
- Dash, G.; Paul, J. CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technol. Forecast. Soc. Chang. 2021, 173, 121092. [Google Scholar] [CrossRef]
- Hu, L.-T.; Bentler, P.M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychol. Methods 1998, 3, 424–453. [Google Scholar] [CrossRef]
- Baumgartner, H.; Homburg, C. Applications of structural equation modeling in marketing and consumer research: A review. Int. J. Res. Mark. 1996, 13, 139–161. [Google Scholar] [CrossRef]
- Kimberlin, C.L.; Winterstein, A.G. Validity and reliability of measurement instruments used in research. Am. J. Health-Syst. Pharm. 2008, 65, 2276–2284. [Google Scholar] [CrossRef]
- Peters, G. (2014). The alpha and the omega of scale reliability and validity: Why and how to abandon Cronbach’s alpha and the route towards more comprehensive assessment of scale quality. The European Health Psychologist, 16(2), 56–69. [CrossRef]
- Ab Hamid, M.; Sami, W.; Sidek, M.M. Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. In Proceedings of the Journal of Physics: Conference Series, Kuantan, Malaysia, 8–10 August 2017; p. 012163.
- Analysis INN. (2020, April 19). Average Variance Extracted (AVE). Analysis INN. https://www.analysisinn.com/post/average-variance-extracted-ave/.
- Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM).
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Park, E.; Kim, K.J.; Del Pobil, A.P. An examination of psychological factors affecting drivers’ perceptions and attitudes toward car navigation systems. In IT Convergence and Security 2012; Springer: Dordrecht, The Netherlands, 2013; pp. 555–562. [Google Scholar]
- Peeta, S.; Ramos, J.L.; Pasupathy, R. Content of Variable Message Signs and On-Line Driver Behavior. Transp. Res. Rec. J. Transp. Res. Board 2000, 1725, 102–108. [Google Scholar] [CrossRef]
- Nelson, R.R.; Todd, P.A.; Wixom, B.H. Antecedents of Information and System Quality: An Empirical Examination Within the Context of Data Warehousing. J. Manag. Inf. Syst. 2005, 21, 199–235. [Google Scholar] [CrossRef]
- Ben-Elia, E.; Di Pace, R.; Bifulco, G.N.; Shiftan, Y. The impact of travel information’s accuracy on route-choice. Transp. Res. Part C: Emerg. Technol. 2012, 26, 146–159. [Google Scholar] [CrossRef]
- Hussain, A.; Mkpojiogu, E.O.C.; Yusof, M.M. Perceived usefulness, perceived ease of use, and perceived enjoyment as drivers for the user acceptance of interactive mobile maps. In AIP Conference Proceedings (Vol. 1761, No. 1, p. 020051). AIP Publishing LLC.
- Marzuki, M. I. I., Rosly, A. N., Roslan, N. S., Abdullah, D., Kamal, S. B. M., & Azmi, A. (2016). The role of perceived interactivity, perceived ease of use, perceived usefulness, and perceived enjoyment toward intention to use online mapping service applications. International Academic Research Journal of Business and Technology, 2(2), 135-139.
- Mukul, M., Srivastava, V., Jade, S., & Mukul, M. (2017). Uncertainties in the shuttle radar topography mission (SRTM) Heights: Insights from the indian Himalaya and Peninsula. Scientific reports, 7(1), 1-10.
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Wang, H.; Ouyang, M.; Meng, Q.; Kong, Q. A traffic data collection and analysis method based on wireless sensor network. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Khairunnisa, R., & Muthaiyah, S. (2021). Understanding Factors Influencing Continuance Intention Of Users Toward Community-Based Traffic And Navigation Application In Indonesia. Turkish Journal of Computer and Mathematics Education, 12(12), 3464-3476.
- Vankatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. Mis Quarterly, 27(3), 425-478.
- Bhattacherjee, A. Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]


| Respondent’s Profile (n=300) | Category | N | % |
|---|---|---|---|
|
Age |
18 | 139 | 46.3% |
| 19 | 99 | 33% | |
| 20 | 57 | 19% | |
| 21 | 5 | 1.7% | |
|
Gender |
Female | 143 | 47.7% |
| Male | 157 | 52.3% | |
|
Area of Residence |
Within NCR | 115 | 38.3% |
| Outside NCR | 185 | 61.7% | |
|
Educational Attainment |
Finished college or with graduate degree | 139 | 46.3% |
| Attended college | 36 | 12% | |
| Attended high school | 121 | 40.3% | |
| Attended grade school level | 4 | 1.3% | |
| Did not attend school | - | - | |
|
Duration of Application Use |
Less than a year | 133 | 44.3% |
| 1 year | 35 | 11.7% | |
| 2 years | 34 | 11.3% | |
| More than 3 years | 98 | 32.7% |
| Items | Measure | Supporting References |
|---|---|---|
| System Quality | ||
| SQ1 | I find the Waze app interface easy to use. | [23,24,25] |
| SQ2 | I have a clear and understandable interaction with the Waze app interface | |
| SQ3 | I feel comfortable using the Waze app services and functionalities. | |
| SQ4 | The Waze app’s interface and system design is friendly. | |
| SQ5 | The Waze app provides user-friendly features. | |
| Perceived Location Accuracy | ||
| PLA1 | The Waze app provides accurate travel information | [26,27,28] |
| PLA2 | The Waze app provides accurate duration of travel | |
| PLA3 | The Waze app provides accurate travel route | |
| PLA4 | The Waze app provides timely travel information | |
| PLA5 | The Waze app provides complete travel information | |
| Perceived Usefulness | ||
| PU1 | I find it easy to remember the steps on how to use Waze app | [1,29,30,34] |
| PU2 | I find it useful to use Waze app to avoid traffic congestion | |
| PU3 | I find it useful to use the Waze app to reach my destination faster | |
| PU4 | I find it useful to use the Waze app to accurately reach my destination | |
| PU5 | I find the Waze app useful in my daily travel | |
| Perceived Ease of Use | ||
| PEOU1 | I find it easy to learn how to use the Waze app. | [1,28,29,30] |
| PEOU2 | I find it easy to be good at navigating using the Waze app. | |
| PEOU3 | I find it easy to do what I want to do in the Waze app. | |
| PEOU4 | I find it easy to use the Waze app. | |
| PEOU5 | Interactions in the Waze app are clear and easy to understand. | |
| Usage intention | ||
| UI1 | I will use the Waze app often. | [25,31,32] |
| UI2 | I am planning to use the Waze app frequently. | |
| UI3 | I wish that my habit of using the Waze app continues in the future. | |
| UI4 | I am motivated to use the Waze app. | |
| UI5 | I am willing to use the Waze app in the future | |
| Actual Use | ||
| AU1 | I use Waze app to avoid traffic congestion | [33,34] |
| AU2 | Among all the traffic navigation apps, I prefer to use the Waze app | |
| AU3 | I use the Waze app frequently. | |
| AU4 | I use the Waze app consistently. | |
| AU5 | I recommend using the Waze app. | |
| Construct | Items | Mean | S.D. | FL (≥0.7) | α (≥0.7) | CR (≥0.7) | AVE (≥0.5) |
|---|---|---|---|---|---|---|---|
| System Quality | SQ1 | 3.85 | 1.15 | 0.897 | 0.946 | 0.947 | 0.959 |
| SQ2 | 3.80 | 1.11 | 0.893 | ||||
| SQ3 | 3.81 | 1.07 | 0.891 | ||||
| SQ4 | 3.92 | 1.10 | 0.921 | ||||
| SQ5 | 3.98 | 1.06 | 0.935 | ||||
| Perceived Location Accuracy | PLA1 | 3.51 | 1.09 | 0.925 | 0.949 | 0.949 | 0.961 |
| PLA2 | 3.68 | 1.09 | 0.927 | ||||
| PLA3 | 3.54 | 1.09 | 0.919 | ||||
| PLA4 | 3.70 | 1.05 | 0.897 | ||||
| PLA5 | 3.71 | 1.09 | 0.891 | ||||
| Perceived Usefulness | PU1 | 3.89 | 1.09 | 0.901 | 0.937 | 0.938 | 0.952 |
| PU2 | 3.75 | 1.13 | 0.911 | ||||
| PU3 | 3.81 | 1.06 | 0.890 | ||||
| PU4 | 3.81 | 1.11 | 0.906 | ||||
| PU5 | 3.69 | 0.14 | 0.895 | ||||
| Perceived Ease of Use | PEU1 | 3.86 | 1.11 | 0.970 | 0.980 | 0.980 | 0.984 |
| PEU2 | 3.71 | 1.09 | 0.934 | ||||
| PEU3 | 3.80 | 1.11 | 0.970 | ||||
| PEU4 | 3.84 | 1.10 | 0.981 | ||||
| PEU5 | 3.83 | 1.13 | 0.958 | ||||
| Usage Intention | UI1 | 3.54 | 1.05 | 0.932 | 0.952 | 0.952 | 0.963 |
| UI2 | 3.57 | 1.07 | 0.924 | ||||
| UI3 | 3.55 | 1.09 | 0.933 | ||||
| UI4 | 3.59 | 1.10 | 0.934 | ||||
| UI5 | 3.89 | 1.04 | 0.859 | ||||
| Actual Use | AU1 | 3.82 | 0.97 | 0.858 | 0.947 | 0.948 | 0.959 |
| AU2 | 3.72 | 1.12 | 0.953 | ||||
| AU3 | 3.56 | 1.09 | 0.909 | ||||
| AU4 | 3.53 | 1.14 | 0.910 | ||||
| AU5 | 3.92 | 1.13 | 0.908 |
| No | Relationship | Beta coefficient | p-value | Result | Significance | Hypothesis |
|---|---|---|---|---|---|---|
| 1 | SQ→PU | 0.530 | <0.001 | Positive | Significant | Accept |
| 2 | SQ→PEU | 0.625 | <0.001 | Positive | Significant | Accept |
| 3 | PLA→PU | 0.467 | <0.001 | Positive | Significant | Accept |
| 4 | PLA→PEU | 0.350 | <0.001 | Positive | Significant | Accept |
| 5 | PU→UI | 0.079 | 0.633 | Positive | Not Significant | Reject |
| 6 | PEU→UI | 0.467 | <0.001 | Positive | Significant | Accept |
| 7 | UI→AU | 0.921 | <0.001 | Positive | Significant | Accept |
| AU | PLA | PEU | PU | SQ | UI | |
|---|---|---|---|---|---|---|
| AU | ||||||
| PLA | 0.781 | |||||
| PEU | 0.790 | 0.780 | ||||
| PU | 0.827 | 0.709 | 0.798 | |||
| SQ | 0.790 | 0.659 | 0.728 | 0.671 | ||
| UI | 0.648 | 0.747 | 0.834 | 0.802 | 0.683 |
| Model Fit for SEM | Parameter Estimates | Minimum cut-off |
Recommended by |
|---|---|---|---|
| SRMR | 0.055 | < 0.08 | Hu & Bentler (1999) |
| (Adjusted) Chi-square/dF | 3.48 | <5.0 | Hooper (2008) |
| Normal Fit Index (NFI) | 0.973 | > 0.90 | Baumgartner (1996) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
