Submitted:
23 April 2023
Posted:
24 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction














3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, K. History of medicine. Early civilizations prehistoric times to 500 c.e. (Facts on file); New York: NY, USA, 2009; pp. 29–50. [Google Scholar]
- Petrovska, B. B. Historical review of medicinal plants’ usage. Pharmacognosy reviews 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Jumagaliyeva, K.V.; Sarmurzina, N.; Kairgalieva, G.K. History of traditional medicine of the Kazakh people. J. Samara Scientific Center of the RAS. Historical Sciences 2020, 1, 117–126. [Google Scholar] [CrossRef]
- 4. WHO Monographs on Medicinal Plants Widespread in CGM (NHH); 2010.
- Grudzinskaya, L.M.; Gemejiyeva, N.G.; Karzhaubekova, Zh.Zh. The Kazakhstan medicinal flora survey in a leading families volume. Bull. Karaganda University. Series “Biology. Medicine. Geography”. 2020, 4, 39–51. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A.; Łysoń, E.; Telesiński, A. The chemical composition and antioxidant properties of common dandelion leaves compared to Sea buckthorn. Can. J. Plant Sci. 2017, 1–27. [Google Scholar] [CrossRef]
- Modaresi, M.; Resalatpour, N. The effect of Taraxacum officinale hydroalcoholic extract on blood cells in mice. Advances in Hematol. 2012, 2012. [Google Scholar] [CrossRef]
- Gemejiyeva, N. G.; Grudzinskaya, L. M. Current state and prospects for studies on the diversity of medicinal flora in Kazakhstan. Vegetation of Central Asia and Environs, /: 239–262. https, 1007. [Google Scholar]
- Khoo, H.-E.; Prasad, K.N.; Kong, K.-W.; Jiang, Y.; Ismail, A. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables. Molecules. 2011, 16, 1710–1738. [Google Scholar] [CrossRef] [PubMed]
- Kenny, O.; Smyth, T.J.; Hewage, C.M.; Brunton, N.P. Quantitative UPLC-MS/MS analysis of chlorogenic acid derivatives in antioxidant fractionates from dandelion (Taraxacum officinale) root. Int. J. Food Sci.Technol. 2015, 50, 766–773. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Concepts in functional foods: the case of inulin and oligofructose. J. nutrition. 1999, 129, 1398S–1401S. [Google Scholar] [CrossRef]
- Kisiel, W.; Barszcz, B. Further sesquiterpenoids and phenolics from Taraxacum officinale. Fitoterapia. 2000, 71, 269–273. [Google Scholar] [CrossRef]
- Jedrejek, D.; Lis, B.; Rolnik, A.; Stochmal, A.; Olas, B. Comparative phytochemical, cytotoxicity, antioxidant and haemostatic studies of Taraxacum officinale root preparations. Food Chem. Toxicol. 2019, 126, 233–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y. F.; Li, W. , Xu, G. Y.; Wang, K. R.; Li, L.; Wu, J. S. Updates and advances on pharmacological properties of Taraxacum mongolicum Hand.-Mazz and its potential applications. Food Chem. 2022, 373, 131380. [Google Scholar] [CrossRef] [PubMed]
- Ata, S.; Farooq, F.; Javed, S. Elemental profile of 24 common medicinal plants of Pakistan and its direct link with traditional uses. J Med Plants Res. 2011, 5, 6164–6168. [Google Scholar] [CrossRef]
- Sweeney, B.; Vora, M.; Ulbricht, C.; Basch, E. Evidence-based systematic review of dandelion (Taraxacum officinale) by natural standard research collaboration. J. Herbal Pharmacotherapy. 2005, 5, 79–93. [Google Scholar] [CrossRef]
- Modaresi, M. A comparative analysis of the effects of garlic, elderberry and black seed extract on the immune system in mice. J. Anim. Vet. Adv 2012, 11, 458–461. [Google Scholar] [CrossRef]
- Blumental, M.; Cladbery, A.; Brinkman, J. Herbal Medicine: Expanded Commission E Monographs: Integrative Medicine Communications: Newton, Mass, USA, 2000.
- Mahesh, A.; Jeyachandran, R.; Cindrella, L.; Thangadurai, D.; Veerapur, V.; Muralidhara Rao, D. Hepatocurative potential of sesquiterpene lactones of Taraxacum officinale on carbon tetrachloride induced liver toxicity in mice. Acta Biologica Hungarica. 2010, 61, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yu, Q.; Wang, F.; Li, Y. , Zhang, G.; Tao, S. Taraxasterol attenuates melanoma progression via inactivation of reactive oxygen species-mediated PI3K/Akt signaling pathway. Human Experimental Toxicology. 2022, 41, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, M.; Poljački, M.; Mimica-Dukić, N.; Boža, P.; Vujanović, L. J.; Ðuran, V.; Stojanović, S. Sesquiterpene lactone mix patch testing supplemented with dandelion extract in patients with allergic contact dermatitis, atopic dermatitis and non-allergic chronic inflammatory skin diseases. Contact dermatitis. 2004, 51, 101–110. [Google Scholar] [CrossRef]
- Im, D. Y.; Lee, K. I. Nitric oxide production inhibitory and scavenging activity and tyrosinase inhibitory activity of extracts from Taraxacum officinale and Taraxacum coreanum. Korean J. Med. Crop Sci. 2011, 19, 362–367. [Google Scholar] [CrossRef]
- 23. Kadeeja, Sinoobiya T. T.; Shijikumar, P. S.; Sirajudheen, M. K.; Baboo, R. A review on pharmacological activity of dandelion plant. Inter. J. Pharm. Pharmaceutical Res.
- Singh, A.; Malhotra, S.; Subban, R. Dandelion (Taraxacum officinale)-hepatoprotective herb with therapeutic potential. Pharmacognosy Rev. 2008, 2, 163. [Google Scholar]
- Jeon, H. J.; Kang, H. J.; Jung, H. J.; Kang, Y. S.; Lim, C. J.; Kim, Y. M.; Park, E. H. Anti-inflammatory activity of Taraxacum officinale. J.ethnopharmacol. 2008, 115, 82–88. [Google Scholar] [CrossRef]
- Al-Eisawi, Z.; Abderrahman, S. M.; Al-Khalaf, I. F.; Al-Abbassi, R. : Bustanji, Y. K. Taraxacum officinale Extracts Exhibit Safe and Selective Anticancer Activity. Nat. Prod. J. 2022, 12, 69–77. [Google Scholar] [CrossRef]
- Epure, A.; Parvu, A.; Vlase, L.; Benedec, D.; Hanganu, D.; Vlase, A.; Oniga, I. Polyphenolic compounds, antioxidant activity and nephroprotective properties of Romanian Taraxacum officinale. Farmacia. 2022, 70, 47–53. [Google Scholar] [CrossRef]
- Pfingstgraf, I. O.; Taulescu, M.; Pop, R. M.; Orăsan, R.; Vlase, L.; Uifalean, A.; Pârvu, A. E. Protective effects of Taraxacum officinale L. (Dandelion) root extract in experimental acute on chronic liver failure. Antioxidants 2021, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Schütz, K.; Carle, R.; Schieber, A. Taraxacum – a review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Sharopov, F.; Boyunegmez, T.T.; Ozleyen, A.; Rodríguez-Pérez, C. ; M. Ezzat, S.; Martins, N. Symphytum species: A comprehensive review on chemical composition, food applications and phytopharmacology. Molecules. 2019, 24, 2272. [Google Scholar] [CrossRef]
- Prozorova, T.A.; Chernykh, I.B. Forage plants of Kazakhstan; Pavlodar: Almaty, KZ, 2004. (In Russian) [Google Scholar]
- Mahmoudzadeh, E.; Nazemiyeh, H.; Valizadeh, H.; Khaleseh, F.; Mohammadi, S.; Hamedeyazdan, S. Nanoencapsulation of n-butanol extract of Symphytum kurdicum and Symphytum asperrimum: Focus on phytochemical analysis, anti-oxidant and antibacterial activity. Iran. J. Basic Med. Sci. 2022, 25, 364. [Google Scholar] [CrossRef] [PubMed]
- Nastić, N.; Borrás-Linares, I.; Lozano-Sánchez, J.; Švarc-Gajić, J.; Segura-Carretero, A. Comparative assessment of phytochemical profiles of comfrey (Symphytum officinale L.) root extracts obtained by different extraction techniques. Molecules. [CrossRef]
- Cao, Z.; Guo, Y.; Liu, Z.; Zhang, H.; Zhou, H.; Shang, H. Ultrasonic enzyme-assisted extraction of comfrey (Symphytum officinale L.) polysaccharides and their digestion and fermentation behaviors in vitro. Process Biochem. [CrossRef]
- Vanitha, A.; Kavinprashantha, R.; Mugendhira-na, S.; Shashikanth, J. Conservation Of Symphytum Officinale L. At Cmprh Garden, Emerald. J. Univ. Shanghai Sci. Technol 2022, 24, 261–272. [Google Scholar] [CrossRef]
- Sowa, I.; Paduch, R.; Strzemski, M.; Zielińska, S.; Rydzik-Strzemska, E.; Sawicki, J.; Wójciak-Kosior, M. Proliferative and antioxidant activity of Symphytum officinale root extract. Nat.Prod. Res. 2018, 32, 605–609. [Google Scholar] [CrossRef]
- Trifan, A.; Zengin, G.; Sinan, K. I.; Skalicka-Woźniak, K.; Minceva, M.; Luca, S. V. Symphytum ibericum Steven: LC–HRMS/MS-based phytochemical profile, in vitro antioxidant and enzyme inhibitory potential. Chemical and Biological Technologies in Agriculture. 2022, 9, 1–12. [Google Scholar] [CrossRef]
- Le, V.; Dolganyuk, V.; Sukhikh, A.; Babich, O.; Ivanova, S.; Prosekov, A.; Dyshlyuk, L. Phytochemical analysis of Symphytum officinale root culture extract. Applied Sciences. 2021, 11, 4478. [Google Scholar] [CrossRef]
- Vaezi, S.; Haghighi, H.M.; Farzad, S.A.; Arabzadeh, S.; Kalalinia, F. Bone Regeneration by Homeopathic Symphytum officinale. Regenerative Engineering and Translational Medicine. 2020, 7, 548–555. [Google Scholar] [CrossRef]
- Seigner, J.; Junker-Samek, M.; Plaza, A.; D ‘Urso, G.; Masullo, M.; Piacente, S.; de Martin, R. A Symphytum officinale root extract exerts anti-inflammatory properties by affecting two distinct steps of NF-κB signaling. Frontiers in pharmacology. 2019, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Colobatiu, L.; Gavan, A.; Potarniche, A. V.; Rus, V.; Diaconeasa, Z.; Mocan, A.; Mihaiu, M. Evaluation of bioactive compounds-loaded chitosan films as a novel and potential diabetic wound dressing material. Reactive and Functional Polymers. 2019, 145, 104369. [Google Scholar] [CrossRef]
- Zanfirescu, A.; Marineci, C. D.; Păun, G.; Ungureanu, O. , Neagu, E., Chiriță, C.; Negreș, S. Chitosan supports containing Impatiens noli-tangere and Symphytum officinale hydroalcoholic extracts in burns treatment: antimicrobial and healing effects. Farmacia. 2021, 69, 948–953. [Google Scholar] [CrossRef]
- Habtemariam, S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evidence-Based Complementary and Alternative Medicine. [CrossRef]
- Middleton Jr, E.; Kandaswami, C. Effects of flavonoids on immune and inflammatory cell functions. Biochem. pharmacol. 1992, 43, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudzadeh, E.; Nazemiyeh, H.; Hamedeyazdan, S. Anti-inflammatory Properties of the Genus Symphytum L.: A Review. Iran. J. Pharmaceutical Res. [CrossRef]
- Yakimenko, O.V.; Grigorievskaya, A.Ya.; Ternovets, M.A. Mistletoe Viscum album L. (Loranthaceae) and “Witch’s Broom” (Proliferation). Bull. VSU, Series: Geography. Geoecology. 2019, 2, 82–85 (In Russian). (In Russian) [Google Scholar]
- Kleszken, E.; Timar, A. V.; Memete, A. R.; Miere, F.; Vicas, S. I. On overview of bioactive compounds, biological and pharmacological effects of mistletoe (Viscum album L). Pharmacophore. 2022, 13, 10–26. [Google Scholar] [CrossRef]
- Peñaloza, E.; Holandino, C.; Scherr, C.; Araujo, P.I.P.d.; Borges, R.M.; Urech, K.; Baumgartner, S.; Garrett, R. Comprehensive Metabolome Analysis of Fermented Aqueous Extracts of Viscum album L. by Liquid Chromatography−High Resolution Tandem Mass Spectrometry. Molecules 2020, 25, 4006. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Barberán, M.; Lerma-García, M. J.; Nicoletti, M.; Simó-Alfonso, E. F.; Herrero-Martínez, J. M.; Fasoli, E.; Righetti, P. G. Proteomic fingerprinting of mistletoe (Viscum album L.) via combinatorial peptide ligand libraries and mass spectrometry analysis. J. Proteomics. [CrossRef]
- Pietrzak, W.; Nowak, R. Impact of Harvest Conditions and Host Tree Species on Chemical Composition and Antioxidant Activity of Extracts from Viscum album L. Molecules. 2021, 26, 3741. [Google Scholar] [CrossRef]
- Blinova, K.F. Botanical-pharmacognostic dictionary: a reference guide; Higher School: Moscow, RU, 2013. (In Russian) [Google Scholar]
- Kyosev, P. Medicinal plants: the most complete reference book; Eksmo: Moscow, RU, 2011; p. 888. (In Russian) [Google Scholar]
- Majeed, M.; Rehman, R. U. Phytochemistry, Pharmacology, and Toxicity of an Epiphytic Medicinal Shrub Viscum album L. (White Berry Mistletoe). Medicinal and Aromatic Plants: Healthcare and Industrial Applications. [CrossRef]
- Jäger, T.; Holandino, C.; Melo, M. N. D. O.; Peñaloza, E. M. C.; Oliveira, A. P.; Garrett, R.; Baumgartner, S. Metabolomics by UHPLC-Q-TOF Reveals Host Tree-Dependent Phytochemical Variation in Viscum album L. Plants. 2021, 10, 1726. [Google Scholar] [CrossRef]
- Gubanov, I. A.; Kiseleva, K. V.; Novikov, V. S.; Tikhomirov, V. N. Illustrated guide to plants in Central Russia; Creativity of scientific publications of KMK, Institute of Technological Research: Moscow, RU, 2004. (In Russian) [Google Scholar]
- Golovkin, B. N.; Rudenskaya, R. N.; Trofimova, I. A.; Schroeter, A. I.; Semikhov, V. F. Biologically active substances of plant origin; Science: Moscow, RU, 2002. (In Russian) [Google Scholar]
- Kwon, Y. S.; Chun, S. Y.; Kim, M. K.; Nan, H. Y.; Lee, C.; Kim, S. Mistletoe extract targets the STAT3-FOXM1 pathway to induce apoptosis and inhibits metastasis in breast cancer cells. Am. J. Chin. Med. 2021, 49, 487–504. [Google Scholar] [CrossRef]
- Pietrzak, W.; Nowak, R. Impact of Harvest Conditions and Host Tree Species on Chemical Composition and Antioxidant Activity of Extracts from Viscum album L. Molecules. 2021, 26, 3741. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.; Schwermer, M.; Eisenbraun, J.; Schramm, A.; Zuzak, T. J. Anticancer effects of Viscum album Fraxini extract on medulloblastoma cells in vitro. Complementary Med. Res. 2021, 28, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Szurpnicka, A.; Zjawiony, J. K.; Szterk, A. Therapeutic potential of mistletoe in CNS-related neurological disorders and the chemical composition of Viscum species. J. Ethnopharmacol. 2019, 231, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Turova, A.D. Medicinal plants and their use. Medicine: Moscow, RU, 2013, p 203. (In Rissian).
- Sayakova, G. M.; Khamitova, A. E.; Olataeva, Z. N. Creation of new dosage forms from domestic plant materials of thick-fruited sophora (Sophora pachycarpa) and white mistletoe (Viscum album) as promising sources of biologically active substances. Bull. KazNMU. 2018, 4, 217–220; https://cyberleninkaru/article/n/sozdanie. (In Russian) [Google Scholar]
- Köse, B.; Erentürk, S. Drying characteristics of mistletoe (Viscum album L.) in convective and UV combined convective type dryers. Industrial. Crops Products. [CrossRef]
- Hah, Y. S.; Kim, E. J.; Goo, Y. M.; Kil, Y. S.; Sin, S. M.; Kim, S. G.; Yoon, T. J. Depigmenting Effects of Mistletoe (Viscum album var. coloratum) Extracts. J. Life Science. [CrossRef]
- Harati, K.; Behr, B.; Daigeler, A.; Hirsch, T.; Jacobsen, F.; Renner, M.; Becerikli, M. Curcumin and Viscum album extract decrease proliferation and cell viability of soft-tissue sarcoma cells: an in vitro analysis of eight cell lines using real-time monitoring and colorimetric assays. Nutrition and cancer. 2017, 69, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Taha, N. A.; Al-Wadaan, M. A. (2021). Significance and use of walnut, Juglans regia Linn: A review. Adv. J. Microbiol. Res. 2021, 15, 1–10. [Google Scholar]
- Dzhangaliev, A.D.; Salova, T.N.; Turekhanova, R.M. Wild fruit plants of Kazakhstan; KazgosINTI: Almaty, KZ, 2001. [Google Scholar]
- Abdallah, I.B.; Tlili, N.; Martinez-Force, E.; Rubio, A.G.; PerezCamino, M.C.; Albouchi, A.; Boukhchina, S. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food. Chem. 2015, 173, 972–978. [Google Scholar] [CrossRef]
- Makarenkova, O. G.; Shevyakova, L. V.; Bessonov, V. V. Natural trace elements of nuts are an integral part of a healthy diet. Nutrition Issues. 2016, 85, 202–202 (In Russian). (In Russian) [Google Scholar]
- Bennacer, A.; Sahir-Halouane, F.; Aitslimane-Aitkaki, S.; Oukali, Z.; Oliveira, I. V.; Rahmouni, N.; Aissaoui, M. Structural characterization of phytochemical content, antibacterial, and antifungal activities of Juglans regia L. leaves cultivated in Algeria. leaves cultivated in Algeria. Biocatalysis and Agricultural Biotechnology. 2022, 40, 102304. [Google Scholar] [CrossRef]
- Vasipov, V.V.; Vytovtov, A.A. Walnut (Juglans Regia L.) - a promising source of biologically active substances. Food. Ecology. Quality (Proceedings of the XIII International Scientific and Practical Conference). 2016, 1, 223–228 (In Russian). (In Russian) [Google Scholar]
- Ivanova, R.A.; Elisovetskaya, D.S. Antioxidant activity of extracts from various types of unripe nuts Juglans Spp. Medicinal plants: biodiversity, technology, application; GSAU: Grodno, RU, 2014. (In Russian) [Google Scholar]
- Gupta, A.; Behl, T.; Panichayupakaranan, P. A review of phytochemistry and pharmacology profile of Juglans regia. Obesity Medicine. 2019, 16, 100142. [Google Scholar] [CrossRef]
- Paudel, P.; Satyal, P.; Dosoky, N.S.; Maharjan, S.; Setzer, W.N. Juglans regia and J. nigra, two trees important in traditional medicine: A comparison of leaf essential oil compositions and biological activities. Nat. Prod. Commun. 2013, 8, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Rather, M.A.; Dar, B.A.; Dar, M.Y.; Wani, B.A.; Shah, W.A.; Bhat, B.A.; Ganai, B.A.; Bhat, K.A.; Anand, R.; Qurishi, M.A. Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine. 2012, 19, 1185–1190. [Google Scholar] [CrossRef]
- Bittner Fialová, S.; Rendeková, K.; Mučaji, P.; Nagy, M.; Slobodníková, L. Antibacterial activity of medicinal plants and their constituents in the context of skin and wound infections, considering European legislation and folk medicine - A review. Inter.J.Mol.Sci. 2021, 22, 10746. [Google Scholar] [CrossRef]
- Schwindl, S. , Kraus, B., Heilmann, J. Phytochemical study of Juglans regia L. leaves. Phytochemical study of Juglans regia L. leaves. Phytochemistry. 2017, 144, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Boulfia, M.; Lamchouri, F.; Toufik, H. Mineral analysis, in vitro evaluation of alpha-amylase, alpha-glucosidase, and beta-galactosidase inhibition, and antibacterial activities of Juglans regia L. bark extracts. bark extracts. BioMed Res. Inter. 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- Khattak, P.; Khalil, T. F.; Bibi, S.; Jabeen, H.; Muhammad, N.; Khan, M. A.; Liaqat, S. Juglans Regia (Walnut Tree) Bark in Dentistry: Walnut Tree Bark in Dentistry. Pakistan BioMedical J. 2022, 5, 152–156. [Google Scholar] [CrossRef]
- Al-Snafi, A. E. Chemical constituents, nutritional, pharmacological and therapeutic importance of Juglans regia-A review. IOSR J. Pharmacy. 2018, 8, 1–21 http://medutqeduiq/wp. [Google Scholar]
- Acquaviva, R.; D’Angeli, F.; Malfa, G.A.; Ronsisvalle, S.; Garozzo, A.; Stivala, A.; Ragusa, S.; Nicolosi, D.; Salmer,i M. ; Genovese, C. Antibacterial and anti-biofilm activities of walnut pellicle extract (Juglans regia L.) against coagulase-negative staphylococci. Nat. Prod. Res. 2021, 35, 2076–2081. [Google Scholar] [CrossRef]
- Fizeșan, I.; Rusu, M. E.; Georgiu, C.; Pop, A.; Ștefan, M. G.; Muntean, D. M.; Popa, D. S. Antitussive, antioxidant, and anti-inflammatory effects of a walnut (Juglans regia L.) septum extract rich in bioactive compounds. Antioxidants. [CrossRef]
- Bittner Fialová, S.; Rendeková, K.; Mučaji, P.; Nagy, M.; Slobodníková, L. Antibacterial activity of medicinal plants and their constituents in the context of skin and wound infections, considering European legislation and folk medicine - A review. Inter.J.Mol.Sci. 2021, 22, 10746. [Google Scholar] [CrossRef]
- Hussain, S. Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T. A. Walnut (Juglans Regia)-Morphology, Taxonomy, Composition and Health Benefits (in book Fruits Grown in Highland Regions of the Himalayas: Nutritional Health Benefits); Springer: 2021, p 269-281. [CrossRef]
- Santos, A.; Barros, L.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I. Leaves and decoction of Juglans regia L. : Different performances regarding bioactive compounds and in vitro antioxidant and antitumor effects Industrial Crops Products. 2013, 51, 430–436. [Google Scholar] [CrossRef]
- Pereira, J. A.; Oliveira, I.; Sousa, A.; Ferreira, I. C.; Bento, A.; Estevinho, L. Bioactive properties and chemical bookcomposition of six walnut (Juglans regia L.) cultivars. Food chem. toxicol, 2111. [Google Scholar] [CrossRef]
- Patel, P.; Prasad, A.; Srivastava, K.; Singh, S. S.; Chakrabarty, D.; Misra, P. Updates on steroidal alkaloids and glycoalkaloids in Solanum spp.: Biosynthesis, in vitro production and pharmacological values. Studies in Natural Products Chemistry. [CrossRef]
- Isabelle, P.; Monica, B. (). Highlighting the compounds with pharmacological activity from some medicinal plants from the area of Romania. Med. Aromat. Plants (Los Angeles).
- Sabudak, T.; Kaya, O.; Cukurova, E. A new biflavonoid from Solanum dulcamara L. and investigation of anti-hyperglycaemic activity of its fruit extract. Nat. Product Res. [CrossRef]
- Kumar, P.; Sharma, B. , Bakshi, N. Biological activity of alkaloids from Solanum dulcamara L. Nat. Product. Res. 2009, 23, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Fallahzadeh, A. R.; Mohammadi, S. Assessment of the antinociceptive, anti-inflammatory, and acute toxicity effects of Solanum dulcamara essential oil in male mice. J. Babol University of Med. Sci. 2020, 22, 162–168. [Google Scholar] [CrossRef]
- Morais, M. G.; Saldanha, A. A.; Azevedo, L. S.; Mendes, I. C.; Rodrigues, J. P. C.; Amado, P. A.; dos Santos Lima, L. A. R. Antioxidant and anti-inflammatory effects of fractions from ripe fruits of Solanum lycocarpum St. Hil.(Solanaceae) and putative identification of bioactive compounds by GC–MS and LC-DAD-MS. Food Res. Inter. [CrossRef]
- Kowalczyk, T.; Merecz-Sadowska, A.; Rijo, P.; Mori, M.; Hatziantoniou, S.; Górski, K.; Sitarek, P. Hidden in plants - a review of the anticancer potential of the Solanaceae family in in vitro and in vivo studies. Cancers. 2022, 14, 1455. [Google Scholar] [CrossRef] [PubMed]
- Sabudak, T.; Kaya, O.; Cukurova, E. A new biflavonoid from Solanum dulcamara L. and investigation of anti-hyperglycaemic activity of its fruit extract. Nat. Product Res. [CrossRef]
- Kumar, P.; Sharma, B.; Bakshi, N. Biological activity of alkaloids from Solanum dulcamara L. Nat. prod. Res. 2009, 23, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Fallahzadeh, A. R.; Mohammadi, S. Assessment of the antinociceptive, anti-inflammatory, and acute toxicity effects of Solanum dulcamara essential oil in male mice. J. Babol University of Med. Sci. 2020, 22, 162–168. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; López-Martínez, L.X.; Contreras-Angulo, L.A.; Elizalde-Romero, C. A.; Heredia, J.B. Plant alkaloids: structures and bioactive properties. Plant-Derived Bioactives: Chemistry and Mode of Action. [CrossRef]
- Mutlu, E.C.; Turker, A.U. Efficient plant regeneration of bittersweet [Solanum dulcamara L.], a medicinal plant. Acta Societatis Botanicorum Poloniae, /: file:///C.
- Neha, T.; Verma, S.K. Aspects of Phenolic Compounds in Pharmacological Activities of Solanum Family. Mol. Biol. 2020, 9, 1–5. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z.; Bujak, T. Saponins as natural raw materials for increasing the safety of bodywash cosmetic use. J. Surfactants Detergents. 2018, 21, 767–776. [Google Scholar] [CrossRef]
- Khalighi, S. F.; Ahvazi, M.; Yazdani, D.; Kashefi, M. Cytotoxicity and antioxidant activity of five plant species of Solanaceae family from Iran. J. Med. Plants. 2012, 11, 43–53; https://wwwresearchgatenet/publication/267037238_Cytotoxicity_and_Antioxidant_Activity_of_Five_Plant_Species_of_Solanaceae_Family_from_Iran. [Google Scholar]
- Milutinović, M.; Nakarada, Đ.; Božunović, J.; Todorović, M.; Gašić, U.; Živković, S.; Mišić, D. Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening. Antioxidants. [CrossRef]
- Kenari, H. M.; Kordafshari, G.; Moghimi, M.; Eghbalian, F.; TaherKhani, D. Review of pharmacological properties and chemical constituents of Pastinaca sativa. J. pharmacopuncture. 2021, 24, 14. [Google Scholar] [CrossRef]
- Gemejiyeva, N. G.; Grudzinskaya, L. M. Current state and prospects for studies on the diversity of medicinal flora in Kazakhstan. In e-book Vegetation of Central Asia and Environs; Springer, 2018, 239-262. [CrossRef]
- Augustin, I. F.; Butnariu, M. A review about Pastinaca sativa L. ssp. sylvestris [Mill.] secondary metabolite diversity and inducibility. J. Appl. Biotechnol. Bioengineering. [CrossRef]
- Averill, K. M.; DiTommaso, A. Wild parsnip (Pastinaca sativa): a troublesome species of increasing concern. Weed Technol. 2007, 21, 279–287. [Google Scholar] [CrossRef]
- Winter, J. C.; Thieme, K.; Eule, J.C.; Saliu, E. M.; Kershaw, O.; Gehlen, H. Photodermatitis and ocular changes in nine horses after ingestion of wild parsnip (Pastinaca sativa). BMC Veterinary Res. 1186. [Google Scholar]
- Symonenko, N.; Shpychak, O.; Mishchenko, O.; Kyslychenko, V.; Shpychak, T.; Grashchenkova, S. Antioxidant and anti-cytolytic activity of parsnip (Pastinaca sativa L.) herb thick extract in conditions of catecholamine myocardiodystrophy in rats. ScienceRise: Pharmaceutical Science. 2022, 1, 70–76. [Google Scholar] [CrossRef]
- Jianu, C.; Goleț, I.; Stoin, D.; Cocan, I.; Lukinich-Gruia, A.T. Antioxidant activity of Pastinaca sativa L. ssp. sylvestris [Mill.] Rouy and Camus essential oil. Molecules. [CrossRef]
- Dar, M.A.; Ahad, P.; Masoodi, M.H. ; etc. Lady’s Purse (Capsella bursa-pastoris L.): Current Perspective on Its Ethnopharmacological, Therapeutic Potential, and Phytochemistry. In Edible Plants in Health and Diseases: Volume II: Phytochemical and Pharmacological Properties 2022, 425-455.
- Al-Snafi, A.E. The chemical constituents and pharmacological effects of Capsella bursa-pastoris-A review. Inter. J. Pharmacol. Toxicol. 2015, 5, 76–81. [Google Scholar]
- Riaz, I.; Bibi, Y.; Ahmed, N. Evaluation of nutritional, phytochemical, antioxidant and cytotoxic potential of Capsella bursa-pastoris, a wild vegetable from potohar region of Pakistan. Kuwait J. of Sci. 2021, 48. [Google Scholar] [CrossRef]
- Grosso, C.; Vinholes, J.; Silva, L.R.; etc. Chemical composition and biological screening of Capsella bursa-pastoris. Revista Brasileira de Farmacognosia 2011, 21, 635–643. [Google Scholar] [CrossRef]
- Cha, J.M.; Kim, D.H.; Lee, T.H.; Subedi, L.; Kim, S.Y.; Lee, K.R. Phytochemical Constituents of Capsella bursa-pastoris and Their Anti-inflammatory Activity. Nat. Prod. Sci. 2018, 24, 132–138. [Google Scholar] [CrossRef]
- Sushchuk, N.A.; Kolesnik, Yu.S.; Kislichenko, V.S. ; etc. Investigation of the component composition of volatile fractions of shepherd’s purse grass and black currant buds. Bull. Tajik National University. Natural Sciences Series, /3.
- Song, N.; Xu, W.; Guan, H.; Liu, X.; Wang, Y.; Nie, X. Several flavonoids from Capsella bursa-pastoris (L. ) Medic [J], 2007, 2, 218–222. [Google Scholar]
- Xie, L.K.; Xu, X.J.; Wu, X. ; etc. Capsella bursa-pastoris (L.) Medic. extract alleviate cataract development by regulating the mitochondrial apoptotic pathway of the lens epithelial cells. J. Ethnopharmacol. 2022, 284, 114783. [Google Scholar] [CrossRef]
- Hasan, R.N.; Ali, M.R.; Shakier, S.M.; etc. Antibacterial activity of aqueous and alcoholic extracts of Capsella Bursa against selected pathogenic bacteria. Am. J. BioScience 2013, 1, 6–10. [Google Scholar] [CrossRef]
- Cha, J.M.; Suh, W.S.; Lee, T.H.; Subedi, L.; Kim, S.Y.; Lee, K.R. Phenolic Glycosides from Capsella bursa-pastoris (L.) Medik and Their Anti-inflammatory Activity. Molecules 2017, 22, 1023. [Google Scholar] [CrossRef]
- Al-Snafi, A. E. The chemical constituents and pharmacological effects of Capsella bursa-pastoris-A review. Int. J.Pharmacology Toxicology. 2015, 5, 76–81. [Google Scholar]
- Lee, K.E.; Shin, J.; Hong, I.S.; etc. Effect of methanol extracts of Cnidium officinale Makino and Capsella bursa-pastoris on the apoptosis of HSC-2 human oral cancer cells. Experimental and therapeutic medicine 2013, 5, 789–792. [Google Scholar] [CrossRef]
- Kubínová, R.; Spačková, V.; Svajdlenka, E.; etc. Antioxidant activity of extracts and HPLC analysis of flavonoids from Capsella bursa-pastoris (L.) Medik. Ceska a Slovenska farmacie: casopis Ceske farmaceuticke spolecnosti a Slovenske farmaceuticke spolecnosti. 2013, 62, 174–176. [Google Scholar] [PubMed]
- Ma, Q.; Guo, Y.; Wei, R.; etc. Flavonoids from Capsella bursa-pastoris and their hepatoprotective activities in vitro. Revista Brasileira de Farmacognosia 2016, 26, 710–713. [Google Scholar] [CrossRef]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; etc. Traditional and ethnomedicinal dermatology practices in Pakistan. Clinics in dermatology. 2018, 36, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H. Utilisation of plant genetic resources for valuable raw materials in foods, cosmetics, and pharmaceutical products. Schriften zu Genetischen Ressourcen. 2003, 182–191. [Google Scholar]
- Uehara, A.; Akiyama, S.; Iwashina, T. Foliar flavonoids from Tanacetum vulgare var. boreale and their geographical variation. Natural product communications. 2015, 10, 403–405. [Google Scholar] [CrossRef]
- Aidarbayeva, D.K.; Sholpankulova, G.; Jarylkapova, S.; Shokanova, A. Natural resources of some medicinal plants of Kazakhstan. International Multidisciplinary Scientific GeoConference: SGEM. [CrossRef]
- Räisänen, R.; Primetta, A.; Nikunen, S.; Honkalampi, U.; Nygren, H.; Pihlava, J.M.; von Wright, A. Examining safety of biocolourants from fungal and plant sources-examples from Cortinarius and Tapinella, Salix and Tanacetum spp. and Dyed Woollen Fabrics. Antibiotics 2020, 9, 266. [Google Scholar] [CrossRef]
- Vilhelmova, N.; Simeonova, L.; Nikolova, N.; Pavlova, E.; Gospodinova, Z.; Antov, G.; Nikolova, I. Antiviral, cytotoxic and antioxidant effects of Tanacetum vulgare L. Crude Extract In Vitro. Folia Medica 2020, 62, 172–179. [Google Scholar] [CrossRef]
- Aćimović, M.; Puvača, N. Tanacetum vulgare L. - A Systematic Review. J. Agron. Technol. Eng. Manag. 2020, 3, 416–422. [Google Scholar]
- Ivănescu, B.; Tuchiluș, C.; Corciovă, A.; etc. Antioxidant, antimicrobial and cytotoxic activity of Tanacetum vulgare, Tanacetum corymbosum and Tanacetum macrophyllum extracts. Farmacia. 2018, 66, 282–288. [Google Scholar]
- Devrnja, N.; Anđelković, B.; Aranđelović, S.; etc. Comparative studies on the antimicrobial and cytotoxic activities of Tanacetum vulgare L. essential oil and methanol extracts. South African Journal of Botany 2017, 111, 212–221. [Google Scholar] [CrossRef]
- Zengin, G.; Cvetanović, A.; Gašić, U.; etc. Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch. Bip. Industrial Crops and Products 2020, 146, 112202. [Google Scholar] [CrossRef]
- Choi, J.H.; Shin, K.M.; Kim, N.Y.; etc. Taraxinic acid, a hydrolysate of sesquiterpene lactone glycoside from the Taraxacum coreanum nakai, induces the differentiation of human acute promyelocytic leukemia HL-60 Cells. Biomedicines 2022, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, W.; Zhang, M.; Chen, C. Taraxasterol suppresses inflammation in il-1β-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice. Int. J. Mol. Sci. 2019, 70, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Kania-Dobrowolska, M.; Baraniak, J. Dandelion (Taraxacum officinale L.) as a source of biologically active compounds supporting the therapy of co-existing diseases in metabolic syndrome. Foods 2022, 11, 2858. [Google Scholar] [CrossRef]
- Kania-Dobrowolska, M.; Baraniak, J. Dandelion (Taraxacum officinale L.) as a Source of biologically active compounds supporting the therapy of co-existing diseases in metabolic syndrome. Foods 2022, 11, 2858. [Google Scholar] [CrossRef]
- Singh, A.; Malhotra, S.; Subban, R. Dandelion (Taraxacum officinale)-Hepatoprotective Herb with Therapeutic Potential. Pharmacognosy Reviews 2008, 2, 163. [Google Scholar]
- Ji, X.; Hou, C.; Guo, X. Physicochemical Properties, Structures, Bioactivities and Future Prospective for Polysaccharides from Plantago L. (Plantaginaceae): A Review. Int. J. Biol. Macromol. 2019, 135, 637–646. [Google Scholar] [CrossRef]
- Baitenov, M.S. Flora of Kazakhstan; Gylym: Almaty, KZ, 2001. (In Russian) [Google Scholar]
- Samuelsen, A.B. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J. Ethnopharmacol. 2000, 71, 1–21. [Google Scholar] [CrossRef]
- Kassaw, E.; Yohannes, T.; Bizualem, E. In vitro antibacterial activity of Plantago lanceolata against some selected standard pathogenic bacterial. Int. J. Biotechnol. 2018, 7, 44–50. [Google Scholar] [CrossRef]
- Samuelsen, A.B. The Traditional Uses, Chemical Constituents and Biological Activities of Plantago major L. A Review. J. Ethnopharmacol. 2000, 71, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Nazarizadeh, A.; Mikaili, P.; Moloudizargari, M.; Aghajanshakeri, S.; Javaherypour, S. Therapeutic uses and pharmacological properties of Plantago major L. and its active constituents. and its active constituents. J. Basic Appl Sci Res. 2013, 3, 212–221. [Google Scholar]
- Abate, L.; Bachheti, R.K.; Tadesse, M.G.; Bachheti, A. Ethnobotanical Uses, Chemical Constituents, and Application of Plantago lanceolata L. J. Chem. 2022, 2022, 1532031. [Google Scholar] [CrossRef]
- Arslan, E.; Aygan, A.; Kocabaş, Y.Z. Antimicrobial Activity of Plantago major Grown in Kahramanmaraş Against Bacteria Causing Hospital Infections. Ecology.
- Kartini, K.; Wati, N.; Gustav, R.; Wahyuni, R.; Anggada, Y.F.; Hidayani, R. . Putra, S.E.D. Wound Healing Effects of Plantago major Extract and Its Chemical Compounds in Hyperglycemic Rats. Food Biosci. 2021, 41, 100937. [Google Scholar] [CrossRef]
- Iskandarova, Sh.F.; Murotov, Sh.B. Determination of biologically active substances of a dry extract obtained on the basis of plantain leaves. Science time 2018, 2, 48–51 (In Russian). (In Russian) [Google Scholar]
- Núñez Guillén, M.E.; da Silva Emim, J.A.; Souccar, C.; Lapa, A.J. Analgesic and Anti-Inflammatory Activities of the Aqueous Extract of Plantago major L. Int. J. Pharmacogn. 1997, 35, 99–104. [Google Scholar] [CrossRef]
- Najafian, Y.; Hamedi, S.S.; Farshchi, M.K.; Feyzabadi, Z. Plantago major in Traditional Persian Medicine and Modern Phytotherapy: A Narrative Review. Electron. Physician 2018, 10, 6390. [Google Scholar] [CrossRef]
- Samuelsen, A.B. The traditional uses, chemical constituents and biological activities of Plantago major L. A Review. J. Ethnopharmacol. 2000, 71, 1–21. [Google Scholar] [CrossRef]
- Adom, M.B.; Taher, M.; Mutalabisin, M.F.; etc. Chemical Constituents and Medical Benefits of Plantago major. Biomed. Pharmacother. 2017, 96, 348–360. [Google Scholar] [CrossRef]
- Nemereshina, O.N.; Gusev, N.F.; Malkova, T.L. Biologically active substances of the large plantain (Plantago major L.) of the steppe zone. News of the Orenburg State Agrarian University 2018, 3, 113–117 (In Russian). (In Russian) [Google Scholar]
- Yousefi, M.; Zahedi, S.; Reverter, M. ; etc. Enhanced growth performance, oxidative capacity and immune responses of common carp, cyprinus carpio fed with artemisia absinthium extract-supplemented Diet. Aquaculture 2021, 545, 737167. [Google Scholar] [CrossRef]
- Kabdulkarimova, K.K.; Dinzhumanova, R.; Olzhayeva, R.; etc. Determination of the chemical composition and antioxidant activity of Artemisia vulgaris and Artemisia absinthium growing in the conditions of the Semey Region. Open Access Maced. Determination of the chemical composition and antioxidant activity of Artemisia vulgaris and Artemisia absinthium growing in the conditions of the Semey Region. Open Access Maced. J. Med. Sci. 2022, 10(A), 1512–1519. [Google Scholar] [CrossRef]
- Dyusebaeva, M.A.; Kurmanbaeva, A.K.; Nurlybekova, A.K.; etc. Amino-acid and fatty-acid compositions of two Artemisia species. Chem. Nat. Compd. 2018, 54, 1208–1210. [Google Scholar] [CrossRef]
- Szopa, A.; Pajor, J.; Klin, P. ; etc. Artemisia absinthium L. - Importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants, 2020, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.S.; Olatunde, A.; El-Mleeh, A.; etc. Bioactive compounds, pharmacological actions, and pharmacokinetics of wormwood (Artemisia absinthium). Antibiotics 2020, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- Amidon, C.; Barnett, R.; Cathers, J.; Chambers, B.; Hamilton, L.; Kellett, A.; Kennel, E.; Montowski, J.; Thomas, M.A.; Watson, B. Artemisia—An Essential Guide from the Herb Society of America; Caroline, A., Thomas, M., Kennel, E., Eds.; The Herb Society of America: Kirtland, OH, USA, 2014. [Google Scholar]
- Ahamad, J. A Pharmacognostic Review on Artemisia absinthium. Int. Res. J. Pharm. 2019, 10, 25–31. [Google Scholar] [CrossRef]
- Bordean, M.E.; Muste, S.; Marțiș, G.S.; Mureșan, V.; Buican, B.C. Health effects of wormwood (Artemisia absinthium L.): From Antioxidant to Nutraceutical. J. Agroalim. Proc. Technol. 2021, 27, 211–218. [Google Scholar]
- Hbika, A.; Daoudi, N.E.; Bouyanzer, A.; Bouhrim, M.; Mohti, H.; Loukili, E.H.; Kouda, A.; Tahiri, M.; Zaid, A. Artemisia absinthium L. Aqueous and Ethyl Acetate Extracts: Antioxidant Effect and Potential Activity In Vitro and In Vivo against Pancreatic α-Amylase and Intestinal α-Glucosidase. Pharmaceutics 2022, 14, 481. [Google Scholar] [CrossRef]
- Hbika, A.; Bouyanzer, A.; Saadi, M.; El Ammari, L.; Benali, M.; Majidi, L.; Zarrouk, A. Structural Study and Thermal Stability of Artemetin Extracted from Artemisia absinthium L. Chem. Data Collect. 2022, 40, 100880. [Google Scholar] [CrossRef]
- Benkhaled, A.; Boudjelal, A.; Napoli, E.; Baali, F.; Ruberto, G. Phytochemical Profile, Antioxidant Activity and Wound Healing Properties of Artemisia absinthium Essential Oil. Asian Pac. J. Trop. Biomed. 2020, 10, 496. [Google Scholar] [CrossRef]
- Chamorro, M.M.A.; Collado, S.A.V.; Márquez, D. Effectiveness of Using Renalof in the Elimination of Kidney Stones under 10 mm Located in the Renal-Ureteral Tract. Open J. Nephrol. 2021, 11, 78. [Google Scholar] [CrossRef]
- Atabayeva, S.; Sarsenbayev, B.; Prasad, M.N.V.; etc. Accumulation of Trace Metals in Grasses of Kazakhstan: Relevance to Phytostabilization of Mine Waste and Metal-Smelting Areas. AAJPSB Special Issue: Kazakhstan Plant Science and Biotechnology 2010, 1, 91–97. [Google Scholar]
- Neagu, E.; Păun, G.; Moroeanu, V.; Ungureanu, O.; Radu, G.L. Antioxidant and Antidiabetic Properties of Polyphenolic-Rich Extracts of Apium graveolens and Agropyrum repens. Rev. Roum. Chim. 2019, 64, 909–913. [Google Scholar] [CrossRef]
- Bortolami, M.; Di Matteo, P.; Rocco, D.; etc. Metabolic Profile of Agropyron repens (L.) P. Beauv. Rhizome Herbal Tea by HPLC-PDA-ESI-MS/MS Analysis. Molecules 2022, 27, 4962. [Google Scholar] [CrossRef] [PubMed]
- Tsubanova, N.A.; Barska, A.V.; Cherniavski, E.S. Clinical efficiency of preparations based on medical plant raw materials in the treatment of urolithiasis. Fam. Med 2019, 81, 80–87. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Chemical constituents and pharmacological importance of Agropyron repens–A review. Res. J. Pharmacology Toxicology 2015, 1, 37–41. [Google Scholar]
- Beydokthi, S. S.; Sendker, J.; Brandt, S.; Hensel, A. Traditionally used medicinal plants against uncomplicated urinary tract infections: hexadecyl coumaric acid ester from the rhizomes of Agropyron repens (L.) P. Beauv. with Antiadhesive Activity against Uropathogenic E. coli. Fitoterapia 2017, 117, 22–27. [Google Scholar] [CrossRef]
- Anghel, N.; Melinte, V. Polysaccharide-Based Matrix Doped with Plant Extract for Medical and Cosmetic Applications. Cellulose Chem. Technol. 2022, 56, 283–291. [Google Scholar] [CrossRef]
- Petrova, A. P.; Krasnov, E. A.; Saprykina, E. V.; Subbotina, Yu. A.; Ermilova, E. V. The Chemical Composition of Wheat Grass and the Study of Its Antioxidant Activity in Allergic Contact Dermatitis. Chem. Pharm. J. 2009, 43, 30–32. [Google Scholar] [CrossRef]
- El Mihyaoui, A.; Esteves da Silva, J. C.; Charfi, S.; etc. Chamomile (Matricaria chamomilla L.): A Review of Ethnomedicinal Use, Phytochemistry and Pharmacological Uses. Life 2022, 12, 479. [Google Scholar] [CrossRef] [PubMed]
- Makubaeva, A.I.; Adekenova, A.S.; Rakhataeva, A.; Mamyrkhan, H. Therapeutic and Cosmetic Agents Based on Biologically Active Substances of Matricaria chamomilla L. and Hypericum perforatum L. Chem. J. Kazakhstan 2020, 4, 105–112. [Google Scholar]
- Höferl, M.; Wanner, J.; Tabanca, N.; etc. Biological activity of Matricaria chamomilla essential oils of various chemotypes. Biological activity of Matricaria chamomilla essential oils of various chemotypes. Planta Med. Inter. Open 2020, 7, 114–121. [Google Scholar] [CrossRef]
- Obead, A.R. Novelty effect of extract of alcohol for Matricaria chamomilla on bacterial growth. Plant Archives 2019, 19, 1850–1852. [Google Scholar]
- Almosawi, M.B.H. A study of chemical composition and effective materials in chamomile flowers (Matricaria chamomilla). Plant Archives 2020, 20, 311–312. [Google Scholar]
- Asgharzade, S.; Rabiei, Z.; Rafieian-Kopaei, M. Effects of Matricaria chamomilla Extract on Motor Coordination Impairment Induced by Scopolamine in Rats. Asian Pac. J. Trop. Biomed. 2015, 5, 829–833. [Google Scholar] [CrossRef]
- Golkhani, S.; Vahdati, A.; Modaresi, M.; Edalatmanesh, M.A. The Effects of Matricaria Chamomilla Extract during Neonatal Period of Rats on Pituitary-Gonadal Hormone Axis and Changes in Testicular Tissue of Male Progenies. Middle East J. Fam. Med. 2017, 15, 126–132. [Google Scholar] [CrossRef]
- Rafraf, M.; Zemestani, M.; Asghari-Jafarabadi, M. Effectiveness of Chamomile Tea on Glycemic Control and Serum Lipid Profile in Patients with Type 2 Diabetes. J. Endocrinol. Invest. 2015, 38, 163–170. [Google Scholar] [CrossRef]
- Bayliak, M.M.; Dmytriv, T.R.; Melnychuk, A.V.; Strilets, N.V.; Storey, K.B.; Lushchak, V.I. Chamomile as a Potential Remedy for Obesity and Metabolic Syndrome. EXCLI J. 2021, 20, 1261. [Google Scholar] [CrossRef]
- Awaad, A.A.; El-Meligy, R.M.; Zain, G.M.; Safhi, A.A.; Al Qurain, N.A.; Almoqren, S.S. . Al-Saikhan, F.I. Experimental and Clinical Antihypertensive Activity of Matricaria Chamomilla Extracts and Their Angiotensin-Converting Enzyme Inhibitory Activity. Phytother. Res. 2018, 32, 1564–1573. [Google Scholar] [CrossRef]
- Silveira, E.S.; Bezerra, S.B.; Ávila, K.S.; Rocha, T.M.; Pinheiro, R.G.; de Queiroz, M.G.R. . Leal, L.K.A. Gastrointestinal effects of standardized brazilian phytomedicine (arthur de carvalho drops®) containing matricaria recutita, gentiana lutea and foeniculum vulgare. Pathophysiology 2019, 26, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.S.; Barreto, R.D.S.S.; Serafini, M.R.; etc. Phytomedicines Containing Matricaria Species for the Treatment of Skin Diseases: A Biotechnological Approach. Fitoterapia 2019, 138, 104267. [Google Scholar] [CrossRef] [PubMed]
- Saidi, R.; Heidari, H.; Sedehi, M.; Safdarian, B. Evaluating the Effect of Matricaria Chamomilla and Melissa Officinalis on Pain Intensity and Satisfaction with Pain Management in Patients after Orthopedic Surgery. J. Herbmed Pharmacol. 2020, 9, 339–345. [Google Scholar] [CrossRef]
- Niknam, S.; Tofighi, Z.; Faramarzi, M.A.; Abdollahifar, M.A.; Sajadi, E.; Dinarvand, R.; Toliyat, T. Polyherbal Combination for Wound Healing: Matricaria Chamomilla L. and Punica Granatum L. DARU J. Pharm. Sci. 2021, 29, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Hassan, D. Amerolative Influence of Chamomile (Matricaria recutita L.) on Synthetic Food Additive Induced Probable Toxicity in Male Albino Rats. J. Food Dairy Sci. [CrossRef]
- Gomes-Carneiro, M. R.; Dias, D. M.; De-Oliveira, A. C. A. X.; Paumgartten, F. J. Evaluation of Mutagenic and Antimutagenic Activities of α-Bisabolol in the Salmonella/Microsome Assay. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2005, 585, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.; Wang, H.; Yao, P. ; etc. Biosynthesis of α-Bisabolol by Farnesyl Diphosphate Synthase and α-Bisabolol Synthase and Their Related Transcription Factors in Matricaria recutita L. Inter. J. Mol. Sci. [CrossRef]
- Yoon, J.H.; Kim, M.Y.; Cho, J.Y. Apigenin: A Therapeutic Agent for Treatment of Skin Inflammatory Diseases and Cancer. Inter. J. Mol. Sci. 2023, 24, 1498. [Google Scholar] [CrossRef]
- Minkhaidarov, V.Yu. Med. Food plants of the Far East, PGSHA, Ussuriysk, RU, 2015; 329 p. (In Russian).
- Shchulipenko, I.M.; Shchulipenko, L.I. Green pharmacy of nature: past and present. Phytotherapy, 2010, 4, 5–9 (In Ukrainian). (In Ukrainian) [Google Scholar]
- McAllister, H. The Genus Sorbus: Mountain Ash and Other Rowans; Royal Botanic Gardens, Kiew: Richmond, Surrey, UK, 2005. [Google Scholar]
- Lykholat, Y.L.; Didur, O.O.; Khromykh, N.O.; etc. Comparative analysis of the antioxidant capacity and secondary metabolites accumulation in the fruits of rowan (Sorbus aucuparia L.) and some closely related species. Ecology and Noospherology 2021, 32, 3–8. [Google Scholar] [CrossRef]
- Chikov, P.S. Medicinal plants, M.: Medicine, Moscow, Ru, 2002; 496 p. (In Russian).
- Isaikina, N.V.; Kalinkina, G.I.; Razina, T.G. ; etc. Sorbus aucuparia L. fruit is a source of the drug for increasing the efficiency of tumor chemotherapy. Rus. J.Bioorganic Chem. 2018, 44, 899–905. [Google Scholar] [CrossRef]
- Šavikin, K.P.; Zdunić, G.M.; Krstić-Milošević, D.B. ; etc. Sorbus aucuparia and Sorbus aria as a source of antioxidant phenolics, tocopherols, and pigments. Chemistry Biodiversity 2017, 14, 1700329. [Google Scholar] [CrossRef]
- Yakovlev, G.P.; Pancake, K.F. Medicinal plant material, Pharmacognosy, St. Petersburg: SpecLit, St. Petersburg, RU, 2004, 765 p. (In Russian).
- Bussmann, R.W.; Paniagua, Z.; Narel, Y.; etc. Plants in the spa–the medicinal plant market of Borjomi, Sakartvelo (Republic of Georgia), Caucasus. Indian J. Tradit. Knowl. 2017, 16, 25–34. [Google Scholar]
- Popoviciu, D.R.; Negreanu-Pîrjol, T. Carotenoid, Flavonoid and Total Phenolic Content of Sorbus torminalis Fruits. Rom. Arab. Int. J. Geobiodivers 2019, 3, 20–25. [Google Scholar]
- Sirotina, K.; Kazimova, K.; Shcherbakova, Y. ; etc. Study of the antioxidant activity of rowan extracts (Sorbus aucuparia) by biotesting method. In IOP Conference Series: Earth and Environmental Science 2022, 949, 1, 012032. [Google Scholar] [CrossRef]
- Razina, T.G.; Zueva, E.P.; Ulrich, A.V.; etc. Antitumor effects of Sorbus aucuparia L. extract highly saturated with anthocyans and their mechanisms. Bull. Experimental biology and medicine 2016, 162, 93–97. [Google Scholar] [CrossRef] [PubMed]
- KC, B.; Gyawali, S.; Luintel, S. ; etc. Sorbus cuspidata (Spach) Hedl. Rosaceae. In Ethnobotany of the Himalayas. [CrossRef]
- Wörz, A.; Diekmann, H. Classification and evolution of the genus Eryngium L. (Apiaceae-Saniculoideae): results of fruit anatomical and petal morphological studies. Plant Diversity and Evol. [CrossRef]
- Wörz, A. A new subgeneric classification of the genus Eryngium L.(Apiaceae, Saniculoideae). Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie. [CrossRef]
- Amantayeva, M.E.; Kozhanova, K.K. The study of plants of the genus Eryngium as promising sources for obtaining phytosubstances. Bull. KazNMU, 2019, 1, 449–451 (In Russian). (In Russian) [Google Scholar]
- Kartal, M.; Mitaine-Offer, A. C.; Abu-Asaker, M.; Miyamoto, T. , Calis, I.; Wagner, H.; Lacaille-Dubois, M. A. Two new triterpene saponins from Eryngium campestre. Chem. Pharm. Bull., 2005, 53, 1318–1320. [Google Scholar] [CrossRef]
- Dalar, A.; Türker, M.; Zabaras, D.; Konczak, I. Phenolic composition, antioxidant and enzyme inhibitory activities of Eryngium bornmuelleri leaf. Plant Foods for Human Nutrition, 2014, 69, 30–36; [Google Scholar] [CrossRef]
- Erdem, S. A.; Nabavi, S. F.; Orhan, I. E.; Daglia, M.; Izadi, M.; Nabavi, S. M. Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. DARU J. Pharm. Sci., 2015, 23, 1–22. [Google Scholar] [CrossRef]
- Colloca, C. B.; Espinar, L. A.; Sosa, V. E. Triterpenoid saponins from Eryngium agavifolium. NPAIJ, 2014, 10, 61–68. [Google Scholar]
- Conea, S.; Vlase, L.; Chirila, I. Comparative study on the polyphenols and pectin of three Eryngium species and their antimicrobial activity. Cellul. Chem. Technol. [CrossRef]
- Kikowska, M.; Budzianowski, J.; Krawczyk, A.; Thiem, B. Accumulation of rosmarinic, chlorogenic and caffeic acids in in vitro cultures of Eryngium planum L. Acta Physiologiae Plantarum, 2012, 34, 2425–2433; [Google Scholar] [CrossRef]
- Kowalczyk, M.; Masullo, M.; Thiem, B.; Piacente, S.; Stochmal, A.; Oleszek, W. Three new triterpene saponins from roots of Eryngium planum. Nat. Prod. Res. 2014, 28, 653–660; [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T. L.; Silva, M. E.; Gurgel, E. S.; Oliveira, M. S.; Lucas, F. C. Eryngium Foetidum L. (Apiaceae): a literature review of traditional uses, chemical composition, and pharmacological activities. Evidence-Based Complementary and Alternative Medicine. [CrossRef]
- Paun, G.; Neagu, E.; Moroeanu, V.; Albu, C.; Savin, S.; Lucian Radu, G. Chemical and bioactivity evaluation of Eryngium planum and Cnicus benedictus polyphenolic-rich extracts. BioMed Res. Int., 2019, 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Chockalingam, N.; Muruhan, S. Anti-inflammatory properties of rosmarinic acid-a review. Int. J. Res. Pharm. Sci, 2017, 8, 656–662. [Google Scholar]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A. A.; Khan, G. J.; Shumzaid, M. . XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacotherapy. 2018, 97, 67–74; [Google Scholar] [CrossRef] [PubMed]
- Pan, M. H.; Lai, C. S.; Ho, C. T. Anti-inflammatory activity of natural dietary flavonoids. Food function, 2010, 1, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Danciu, C.; Avram, S.; Pavel, I. Z.; Ghiulai, R.; Dehelean, C. A.; Ersilia, A. . Soica, C. Main isoflavones found in dietary sources as natural anti-inflammatory agents. Current drug targets, 2018, 19, 841–853; [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.; Tuli, H. S.; Sharma, A. K. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life sciences, 2016, 146, 201–213. [Google Scholar] [CrossRef]
- Kuatbay, E.; Ustenova, G.; Arykbaeva, A. Prospects of the flat-leaved bluebird (Eryngium planum l.) In the prevention and treatment of dermatological diseases. Bull. Bashkir State Medical University.
- Gopalan, A.; Reuben, S. C.; Ahmed, S.; Darvesh, A. S.; Hohmann, J.; Bishayee, A. The health benefits of blackcurrants. Food function, 2012, 3, 795–809. [Google Scholar] [CrossRef]
- Magazhanov, Z. M.; Bektursunova, M. Z. Research on biologically active substances of some fruit crops growing in the southeast of Kazakhstan. Food Processing: Techniques and Technology, 2016, 43, 30–35. [Google Scholar]
- Pieszka, M.; Migdał, W.; Gąsior, R.; Rudzińska, M.; Bederska-Łojewska, D.; Pieszka, M.; Szczurek, P. Native oils from apple, blackcurrant, raspberry, and strawberry seeds as a source of polyenoic fatty acids, tocochromanols, and phytosterols: A health implication. J. of Chem. 2015. [Google Scholar] [CrossRef]
- Ma, E. Z.; Khachemoune, A. Flavonoids and their therapeutic applications in skin diseases. Archives of dermatological research, 2023, 315, 321–331. [Google Scholar] [CrossRef]
- Rani, L.; Sharma, N.; Singh, S.; Grewal, A. S. Therapeutic potential of vitamin c: an overview of various biological activities. Int. J. Pharm. Quality Assurance, 2019, 10, 605–612. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdylo, A. Comparison of Phenolic Compounds and Antioxidant Potential between Selected Edible Fruits and Their Leaves. J. Funct. Foods, 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Popova, T. S.; Popov, D. M.; Tereshina, N. S. The study of flavonoids of buds and leaves of black currant by HPLC. Pharm. /: 1, 13–15. (In Russian) https, 2541; 1. [Google Scholar]
- Mikhailova, I. V.; Filippova, Yu. V.; Kuzmicheva, N. A.; Vinokurova, N. V.; Ivanova, E. V.; Voronkova, I. P. Black currant as a promising source of polyphenolic antioxidants. Int. Res. J.
- Cao, L.; Park, Y.; Lee, S.; Kim, D. O. Extraction, identification, and health benefits of anthocyanins in blackcurrants (Ribes nigrum L.). Appl. Sci., 2021, 11, 1863; [Google Scholar] [CrossRef] [PubMed]
- Staszowska-Karkut, M.; Materska, M. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients, 2020, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Nanashima, N.; Horie, K.; Maeda, H.; Tomisawa, T.; Kitajima, M.; Nakamura, T. Blackcurrant anthocyanins increase the levels of collagen, elastin, and hyaluronic acid in human skin fibroblasts and ovariectomized rats. Nutrients, 2018, 10, 495; [Google Scholar] [CrossRef]
- Balić, A.; Vlašić, D.; Žužul, K.; Marinović, B.; Bukvić Mokos, Z. Omega-3 versus omega-6 polyunsaturated fatty acids in the prevention and treatment of inflammatory skin diseases. Int. J. M. Sci., 2020, 21, 741. [Google Scholar] [CrossRef] [PubMed]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; El-Mleeh, A.; M. Abdel-Daim, M.; Prasad Devkota, H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L.(Fabaceae). Biomolecules, 2020, 10, 352. [Google Scholar]
- Ishmuratova, M. Y.; Imanbayeva, A. A.; Tuyakova, A. T.; Kopbaeva, G. B. Study of common licorice (Glycyrrhiza glabra) reserves in Atyrau and Western-Kazakhstan regions. Biosciences Biotechnol. Res.Asia, 2016, 13, 1429. [Google Scholar] [CrossRef]
- Alexyuk, P. G.; Bogoyavlenskiy, A. P.; Alexyuk, M. S.; Turmagambetova, A. S.; Zaitseva, I. A.; Omirtaeva, E. S.; Berezin, V. Adjuvant activity of multimolecular complexes based on Glycyrrhiza glabra saponins, lipids, and influenza virus glycoproteins. Arch. Virol, 2019, 164, 1793–1803. [Google Scholar] [CrossRef]
- Khan Ahmadi M, M.; Naghdi Badi, H.; Akhondzadeh, S.; Khalighi–Sigaroodi, F.; Mehrafarin, A.; Shahriari, S.; Hajiaghaee, R. A Review on Medicinal Plant of Glycyrrhiza glabra L. J. Med. Plants, 2013, 12, 1–12. [Google Scholar]
- Wang, K. L.; Yu, Y. C.; Chen, H. Y.; Chiang, Y. F.; Ali, M.; Shieh, T. M.; Hsia, S. M. Recent Advances in Glycyrrhiza glabra (Licorice)-Containing Herbs Alleviating Radiotherapy-and Chemotherapy-Induced Adverse Reactions in Cancer Treatment. Metabolites, 2022, 12, 535; [Google Scholar] [CrossRef]
- Parvaiz, M.; Hussain, K.; Khalid, S.; Hussnain, N.; Iram, N.; Hussain, Z.; Ali, M. A. A review: Medicinal importance of Glycyrrhiza glabra L. (Fabaceae family). Global J Pharmacol, 2014, 8, 8–13. [Google Scholar] [CrossRef]
- Anagha, K.; Manasi, D.; Priya, L.; Meera, M. Antimicrobial activity of yashtimadhu (Glycyrrhiza glabra L.)-a review. Int. J. Curr. Microbiol. App. Sci, 2014, 3, 329–336. [Google Scholar]
- Panichakul, T.; Rodboon, T.; Suwannalert, P.; Tripetch, C.; Rungruang, R.; Boohuad, N.; Youdee, P. Additive effect of a combination of Artocarpus lakoocha and Glycyrrhiza glabra extracts on tyrosinase inhibition in melanoma B16 cells. Pharmaceuticals, 2020, 13, 310. [Google Scholar] [CrossRef] [PubMed]
- Cerulli, A.; Masullo, M.; Montoro, P.; Piacente, S. Licorice (Glycyrrhiza glabra, G. Uralensis, and G. Inflata) and their constituents as active cosmeceutical ingredients. Cosmetics, 2022, 9, 7; [Google Scholar] [CrossRef]
- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M. B. P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytotherapy research, 2018, 32, 2323–2339. [Google Scholar] [CrossRef]
- Baumann, L. S. Less-known botanical cosmeceuticals. Dermatologic therapy, 2007, 20, 330–342. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The traditional uses, constituents and pharmacological effects of Ononis spinosa. IOSR J. Pharm., 2020, 10, 53–59. [Google Scholar]
- Gampe, N.; Darcsi, A.; Kursinszki, L.; Béni, S. Separation and characterization of homopipecolic acid isoflavonoid ester derivatives isolated from Ononis spinosa L. root. J. Chromatogr. B, 2018, 1091, 21–28. [Google Scholar] [CrossRef]
- Gampe, N.; Darcsi, A.; Lohner, S.; Béni, S.; Kursinszki, L. Characterization and identification of isoflavonoid glycosides in the root of Spiny restharrow (Ononis spinosa L.) by HPLC-QTOF-MS, HPLC–MS/MS and NMR. J. Pharm. Biomed. Anal., 2016, 123, 74–81. [Google Scholar] [CrossRef]
- Altuner, E.M.; Çeter, T.; Lşlek, C. Investigation of antifungal activity of Ononis spinosa L. ASH used for the therapy of skin infections as folk remedies. Mikrobiyoloji Bul. 2010, 44, 633–639. [Google Scholar]
- Thuwaini, M. M. Natural sources as promising future anticancer therapies-A review. GSC Biological and Pharmaceutical Sciences, 2022, 19, 84–113. [Google Scholar] [CrossRef]
- Stojković, D.; Dias, M. I.; Drakulić, D.; Barros, L.; Stevanović, M.; CFR Ferreira, I.; D. Soković, M. Methanolic extract of the herb Ononis spinosa L. is an antifungal agent with no cytotoxicity to primary human cells. Pharmaceuticals, 2020, 13, 78; [Google Scholar] [CrossRef]
- Zheng, X.; Wang, W.; Piao, H.; Xu, W.; Shi, H.; Zhao, C. The genus Gnaphalium L. (Compositae): phytochemical and pharmacological characteristics. Molecules, 2013, 18, 8298–8318; [Google Scholar] [CrossRef] [PubMed]
- Pozdnyakova, Ye.; Omarova, G.; Murzatayeva, A. ; Wild Plants of Central Kazakhstan with Antibiotic Properties and Effect. Intl. J. Agric. Biol.
- Shikov, A. N.; Kundracikova, M.; Palama, T. L.; Pozharitskaya, O. N.; Kosman, V. M.; Makarov, V. G.; Verpoorte, R. Phenolic constituents of Gnaphalium uliginosum L. Phytochem. Letters, 2010, 3, 45–47. [Google Scholar] [CrossRef]
- Olennikov, D. N.; Chirikova, N. K.; Kashchenko, N. I. Spinacetin, a new caffeoylglycoside, and other phenolic compounds from Gnaphalium uliginosum. Chem. Nat. Compd., 2015, 51, 1085–1090. [Google Scholar] [CrossRef]
- Sharonova, N. L.; Terenzhev, D. A.; Bushmeleva, K. N.; Gumerova, S. K.; Lyubina, A. P.; Fitsev, I. M.; Belov, T. G. Phytochemical Contents, Antimicrobial and Antioxidant Properties of Gnaphalium uliginosum L. Ethanolic Extract and Essential Oil for Agricultural Uses. Asian J. Chem., 2019, 11(31), 2672-2678.
- Lubsandorzhieva, P. B.; Rendyuk, T. D.; Dargaeva, T. D.; Ferubko, E. V. Pharmacognostic Study of Collection and Study of its Hepatoprotective Activity. Pharmacognosy J. [CrossRef]
- Shikov, A. N.; Kundracikova, M.; Palama, T. L.; Pozharitskaya, O. N.; Kosman, V. M.; Makarov, V. G.; Verpoorte, R. Phenolic constituents of Gnaphalium uliginosum L. Phytochemistry Letters, 2010, 3, 45–47. [Google Scholar] [CrossRef]
- Goun, E. A.; Petrichenko, V. M.; Solodnikov, S. U.; Suhinina, T. V.; Kline, M. A.; Cunningham, G.; Miles, H. Anticancer and antithrombin activity of Russian plants. J. Ethnopharmacol., 2002, 81, 337–342. [Google Scholar] [CrossRef]
- Sõukand, R.; Kalle, R.; Pieroni, A. Homogenisation of biocultural diversity: Plant ethnomedicine and its diachronic change in Setomaa and Võromaa, Estonia, in the last century. Biol., 2022, 11, 192; [Google Scholar] [CrossRef]
- Dimitrova-DyulgerovA, I.; Stoyanova, A. Lipid composition of carduus thoermeri weinm. Onopordum acanthium L. and Silybum marianum L., growing in Bulgaria. Bulgarian J. Agricult.Sci., 2014, 20, 622–627 https://wwwagrojournalorg/20/03. [Google Scholar]
- Al-Snafi, A. E. Constituents and pharmacology of Onopordum acanthium. IOSR J. Pharm., 2020, 10, 7–14. [Google Scholar]
- Bruno, M.; Maggio, A.; Rosselli, S.; Safder, M.; Bancheva, S. The metabolites of the genus Onopordum (Asteraceae): Chemistry and biological properties. Curr. Org. Chem., 2011, 15, 888–927; [Google Scholar] [CrossRef]
- Tonguc, M. U. H. A. M. M. E. T.; ERBAŞ, S. Evaluation of fatty acid compositions and some seed characters of common wild plant species of Turkey. Turkish Journal of Agriculture and Forestry, 2012, 36, 673–679. [Google Scholar] [CrossRef]
- Garsiya, E. R.; Konovalov, D. A.; Shamilov, A. A.; Glushko, M. P.; Orynbasarova, K. K. Traditional medicine plant, Onopordum acanthium L. (Asteraceae): chemical composition and pharmacological research. Plants, 2019, 8, 40; [Google Scholar] [CrossRef]
- Mobli, M.; Qaraaty, M.; Amin, G.; Haririan, I.; Hajimahmoodi, M.; Rahimi, R. Scientific evaluation of medicinal plants used for the treatment of abnormal uterine bleeding by Avicenna. Archives of gynecology and obstetrics, 2015, 292, 21–35; [Google Scholar] [CrossRef]
- Mamedov, N.; Mehdiyeva, N. P.; Craker, L. E. Medicinal plants used in traditional medicine of the Caucasus and North America. J. medicinally active plants, 2015, 4, 42–66; [Google Scholar] [CrossRef]
- Ryzhov, V. M.; Belchenko, A. S. Issues of diagnostics of prickly tartar fruit (Onopordum acanthium L.) as a promising medicinal plant raw material. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 0: 1025-1029. URL: https://cyberleninka.ru/article/n/issledovanie-perspektivy-kompleksnoy-pererabotki-nadzemnoy-chasti-tatarnika-kolyuchego-onopordum-acanthium-l (view, 1025. [Google Scholar]
- Sharifi, N.; Souri, E.; Ziai, S. A.; Amin, G.; Amini, M.; Amanlou, M. Isolation, identification and molecular docking studies of a new isolated compound, from Onopordon acanthium: A novel angiotensin converting enzyme (ACE) inhibitor. J. Ethnopharmacol., 2013, 148, 934–939; [Google Scholar] [CrossRef]
- Csupor-Löffler, B.; Hajdú, Z.; Réthy, B.; Zupkó, I.; Máthé, I.; Rédei, T.; Hohmann, J. Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part II. Phytotherapy Research: Int. J. Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 2009, 23, 1109–1115; [Google Scholar] [CrossRef]
- Naumov, S. Yu.; Vatanskaya, I. Yu. Medicinal plants in the flora of the Volga-Akhtuba floodplain. Scientific Notes of the Cape Martian Nature Reserve, /: (8), 112-117. (In Russian). https.
- Jovanović, A. A.; Ðordevic’, V. B.; Zdunic´, G. M.; Pljevljakušic´, D. S.; Šavikin, K. P.; Godevac, D. M.; Bugarski B., M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol.
- Orazbayeva, P. Z.; Akhmetalimova, A.M.; Ivasenko, S. A.; Loseva, I. V.; Ishmuratova, M. Yu. (2017). Distribution of some plants of the Thyme genus on the territory of Central Kazakhstan. In Modern aspects of the use of plant raw materials and raw materials of natural origin in medicine,.
- Jovanović, A. A.; Balanč, B.; Petrović, P.; Pravilović, R.; Djordjević, V. Pharmacological potential of Thymus serpyllum L.(wild thyme) extracts and essential oil: A review. J. Eng. Process. Manage., 2021, 13, 32–41. [Google Scholar] [CrossRef]
- Khudonogova, E. G.; Kiseleva, T. V. The content of essential oils in the aboveground part of creeping thyme. Siberian Bulletin of Agricultural Science, 2010, 7, 110–113 (In Russian). (In Russian) [Google Scholar]
- Konovalov, D. A.; Orobinskaya, V. N.; Pisarenko, O. N. Antioxidants of fruits and vegetables. Mod. Sci. Innovation.
- Goncharova, T. A. Encyclopedia of medicinal plants. M.: Publishing house of MSP, 2001. - Vol.1 - p 560; Vol.2 - p 528. (In Russian).
- Chaadaeva, H. H.; Boitsova, O. A. Anatomical features of the structure of Thymus serpyllum L., growing on the territory of the Orel region. Scientific notes of the Orel State University. Series: Natural, Technical and Medical Sciences.
- Bazuk, A. G.; Yurchenko, R. A.; Vinarsky, V. A.; Buzuk, G. N. Comparative pharmacognostic analysis of Thyme herb. Bull. Pharm., 2011, 3, 19–24 (In Russian). (In Russian) [Google Scholar]
- Jarić, S.; Mitrović, M.; Pavlović, P. Review of ethnobotanical, phytochemical, and pharmacological study of Thymus serpyllum L. Evidence-based complementary and alternative medicine, 2015, 2015, 101978. [Google Scholar] [CrossRef] [PubMed]
- Tadele, A.; Urga, K.; Gemeda, N.; Lemma, H.; Melaku, D.; Mudie, K. Antimicrobial activity of topical formulations containing Thymus vulgaris essential oil on major pathogens causing skin diseases. Ethiopian Pharmaceutical J. 2009, 26, 103–110. [Google Scholar] [CrossRef]
- Udintsev, S. N.; Zhilyakova, T. P.; Melnikov, D. P. Vegetable feed additives prospects for the use of Grass and Thyme meal. Pig Breeding, 2010, 5, 18–21 (In Russian). (In Russian) [Google Scholar]
- Gubanov I., A.; Kiseleva K., V.; Novikov V., S.; Tikhomirov V., N. Illustrated determinant of plants of Central Russia. Moscow: Association of Scientific Publications of the CMC, Institute of Technological Research, 2004, 3, 11 (In Russian). (In Russian) [Google Scholar]
- Dekker, J. The evolutionary ecology of weeds and invasive plants. Evolut Ecol, /: 12. https, 2696. [Google Scholar]
- Kurbanov, S. A. Agriculture : a textbook for universities; Yurayt Publishing House, Moscow, Russia, 2023; 252.
- Ivanović, M.; Grujić, D.; Cerar, J.; Islamčević Razboršek, M.; Topalić-Trivunović, L.; Savić, A.; Kolar, M. Extraction of Bioactive Metabolites from Achillea millefolium L. with Choline Chloride Based Natural Deep Eutectic Solvents: A Study of the Antioxidant and Antimicrobial Activity. Antioxidants, 2022, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Nesterova, S. G.; Ogar, N. P.; Inelova, Z. A.; Karamanidi, E. E. The family spectrum of the flora of the Toraigyr mountains. Bull. Treasury. Biolog. series, 2012, 54, 7–10 (In Russian). (In Russian) [Google Scholar]
- Karami, P.; Zandi, M.; Ganjloo, A. Evaluation of physicochemical, mechanical, and antimicrobial properties of gelatin-sodium alginate-yarrow (Achillea millefolium L.) essential oil film. J. Food Processing Preservation, 2022, 46, 16632. [Google Scholar] [CrossRef]
- Ayoobi, F.; Shamsizadeh, A.; Fatemi, I.; Vakilian, A.; Allahtavakoli, M.; Hassanshahi, G.; Moghadam-Ahmadi, A. Bio-effectiveness of the main flavonoids of Achillea millefolium in the pathophysiology of neurodegenerative disorders-a review. Iran. J. Basic Med. Sci. 2017, 20, 604. [Google Scholar] [CrossRef]
- Kiseleva, T. L. Kinetic synergism in phytotherapy: traditional drugs from the point of view of modern scientific concepts. Traditional medicine, 2011. [Google Scholar]
- Musaev, F. A.; Zakharova, O. A.; Musaeva, R. F. Medicinal plants (textbook). Inter. J. Exper. Education, /: (11-1), 77-78. https, 6220. [Google Scholar]
- Anishchenko, L. V. Encyclopedia of Medicinal Plants; AST: Moscow, 2017; (In Russian). ISBN 978-5-17-100053-0. [Google Scholar]
- Aslanova, D.; Karomatov, I. D. Yarrow is common in folk and scientific herbal medicine. Biology Integrative Med. 2018, 1, 167–186 (In Russian). (In Russian) [Google Scholar]
- Vazirinejad, R.; Ayoobi, F.; Arababadi, M. K.; Eftekharian, M. M.; Darekordi, A.; Goudarzvand, M.; Shamsizadeh, A. Effect of aqueous extract of Achillea millefolium on the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. Indian J. Pharmacol. 2014, 46, 303. [Google Scholar] [CrossRef]
- Vitale, S.; Colanero, S.; Placidi, M.; Di Emidio, G.; Tatone, C.; Amicarelli, F.; D’Alessandro, A. M. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. Molecules, 2022, 27, 3566; [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Sarker, S.D.; Akbarzadeh, A. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 2017, 199, 257–315. [Google Scholar] [CrossRef] [PubMed]
- Masłowski, M.; Aleksieiev, A.; Miedzianowska, J.; Strzelec, K. Potential application of peppermint (Mentha piperita L.), german chamomile (Matricaria chamomilla L.) and yarrow (Achillea millefolium L.) as active fillers in natural rubber biocomposites. Int. J. Mol. Sci., 2021, 22, 7530. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.I.; Gopalakrishnan, B.; Venkatesalu, V. Pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: A review. Phytotherapy Research, 2017, 31, 1140–1161. [Google Scholar] [CrossRef] [PubMed]
- Applequist, W. L.; Moerman, D. E. Yarrow (Achillea millefolium L.): a neglected panacea? A review of ethnobotany, bioactivity, and biomedical research. Economic Botany, 2011, 65, 209–225. [Google Scholar] [CrossRef]
- Maver, T.; Maver, U.; Stana Kleinschek, K.; Smrke, D.M.; Kreft, S. A Review of Herbal Medicines in Wound Healing. Int. J. Dermatol. 2015, 54, 740–751. [Google Scholar] [CrossRef]
- Shi, C.; Wang, C.; Liu, H.; Li, Q.; Li, R.; Zhang, Y.; Liu, Y.; Shao, Y.; Wang, J. Selection of Appropriate Wound Dressing for Various Wounds. Front. Bioeng. Biotechnol., 2020, 8, 182. [Google Scholar] [CrossRef]
- Patrulea, V.; Ostafe, V.; Borchard, G.; Jordan, O. Chitosan as a Starting Material for Wound Healing Applications. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV, 2015, 97, 417–426. [Google Scholar] [CrossRef]
- Makia, R. Pharmacology of the species Equisetum (Equisetum arvense). GSC Biol. Pharmaceutical Sci.
- Galina, S. Wild medical plants in the phytocenoses of the Northern Kazakhstan. Med. Health Sci. J. 2012, 13, 128. [Google Scholar]
- Amber N., P. , Iris L., Dunja Š., Bernd M. L. Differential Accumulation of Metabolites and Transcripts Related to Flavonoid, Styrylpyrone, and Galactolipid Biosynthesis in Equisetum Species and Tissue Types. Metabolites 2022, 12, 403. [Google Scholar] [CrossRef]
- Botirov, E. H.; Bonacheva, V. M.; Kolomiets, N. E. Chemical composition and biological activity of metabolites of plants of the genus Equisetum L. Chemistry of plant raw materials. [CrossRef]
- Raghda, M. , Khulood W. A., Mohammad M.F., Mohammed H. A. Phytochemistry of the Genus Equisetum (Equisetum arvense). GSC Biolog. Pharmaceutical Sci.
- Nagai, T.; Myoda, T.; Nagashima, T. Antioxidative activities of water extract and ethanol extract from field horsetail (tsukushi) Equisetum arvense L. Food chemistry.
- Niko, R.; Gordana, S.; Radosav, P. Composition and antimicrobial activity of Equisetum arvense L. essential oil. Phytotherapy Res. 2006, 20, 85–88. [Google Scholar]
- Dragana D., Č.; Jasna M., Č.; Gordana M., B.; Sonja M., D.; Gordana S., Ć.; Vesna T., T.; Bratislav T., S. Antioxidative and Antiproliferative Activities of Different Horsetail (Equisetum arvense L.) Extracts. J. Med. Food 2010, 13, 452–459. [Google Scholar]
- Hyuncheol Oh, Do-Hoon Kim, Jung-Hee Cho, Youn-Chul Kim Hepatoprotective and free radical scavenging activities of phenolic petrosins and flavonoids isolated from Equisetum arvense / J. Ethnopharmacol; 2004, 95(2-3), 421-424. 95(2-3).
- Aldaas, S. Cytotoxic and antibacterial activity of an extract from a Saudi traditional medicinal plant Equisetum arvense (Doctoral dissertation). 2011, SalsabilAldaasThesis.pdf.
- Zia-Ur-Rehman, Gurgul A. ; Youn, I.; Maldonado, A.; Wahid, F.; Che, CT.;, Khan, T. UHPLC-MS/MS-GNPS based phytochemical investigation of Equisetum arvense L. And evaluation of cytotoxicity against human melanoma and ovarian cancer cells. Saudi J Biol Sci. 2022, 29, 103271. [Google Scholar] [CrossRef]
- Navdeep, S.S.; Sarabjit, K.; Divneet, C. Equietum arvense: pharmacology and phytochemistry - a review. Asian J. Pharmaceutical Clinical Res. 2010, 3, 146–150. [Google Scholar]
- Hayat, A.; Temamogullari, F.; Yilmaz, R.; Karabulut, O. Effect of Equisetun arvense on wound contraction of Full-Thicnes Skin Wounds in Rabbits. J. Animal Veterinary Advances 2011, 10, 81–83. [Google Scholar]
- Lei, W.; Luojun, Z.; Guangtao, Z.; Haiping, L.; Attalla, F. El-kott, Ayman E. El-kenawy. Equisetum arvense L. aqueous extract: a novel chemotherapeutic supplement for treatment of human colon carcinoma. Arch. Med. Sci. [CrossRef]
- Carneiro, D.M.; Jardim, T.V.; Araújo, Y.C.L.; Arantes, A.C.; et al. Equisetum arvense: new evidences supports medical use in daily clinic. Pharmacognosy Rev. 2019, 13, 50–58. [Google Scholar] [CrossRef]
- Korpelainen, H.; Pietiläinen, M. Hop (Humulus lupulus L.): Traditional and present use, and future potential. Economic botany. [CrossRef]
- Katja, B.; Mojca, Š.; Iztok, J. K.; Željko, K. H. (Humulus lupulus L.) Essential Oils and Xanthohumol Derived from Extraction Process Using Solvents of Different Polarity. Horticulturae 2022, 8, 368. [Google Scholar] [CrossRef]
- Balciunaitiene, A.; Viskelis, P.; Viskelis, J. , Streimikyte, P.; Liaudanskas, M.; Bartkiene, E.; et al.l. Green Synthesis of Silver Nanoparticles Using Extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., Physico-Chemical Characterization, Antimicrobial and Antioxidant Activity. Processes, 2021, 9, 1304. [Google Scholar] [CrossRef]
- Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.S.; Lorenzo, J.M. Humulus lupulus L. as a Natural Source of Functional Biomolecules. App. Sci. 2020, 10, 5074. [Google Scholar] [CrossRef]
- Zita, H. , Marie-Luise F., Fabian G., Martin H., Birgit H., Anja C., Kay S., Christoph M.S., Ute W. The Anti-Inflammatory Effect of Humulus lupulus Extract in vivo Depends on the Galenic System of the Topical Formulation. Pharmaceuticals 2022, 15, 350. [Google Scholar] [CrossRef]
- Naoto, Y.; Keiko, S.; Mitsunori, O. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine 2009, 16, 369–376. [Google Scholar]
- Janda, K.; Gutowska, I.; Geszke-Moritz, M. , Jakubczyk K. The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties-A Review. Molecules. [CrossRef]
- Katarzyna, J.; Izabela, G.; Małgorzata, G.; Karolina, J. The Common Cichory (Cichorium -intybus L.) as a Source of Extracts with Health-Promoting Properties - A Review. Molecules 2021, 26, 1814. [Google Scholar] [CrossRef]
- Laurenov, G.V.; Lavrenov, V.K. Encyclopedia of Medicinal Plants 2016, 2, p. 1440.
- Khaled N., R. , Monica B. Antimicrobial and antioxidant effects of Cichorium intybus aerial parts and Chemical profile. Egyp. J, Chem. Article 2021, 64, 4689–4696. [Google Scholar] [CrossRef]
- Cicillin, A. Medicinal plants in and around the country, Complete encyclopedia; Litres: Moscow, RU, 2014; p. 4966. [Google Scholar]
- Harsahay, M.; Basant, B.; Swati, A.; Madhu, B. Evaluation of phytochemicals, antioxidant property and effects of Cichorium intybus cultivated at foothill area of Uttarakhand on hyperglycemic rats. IP Int. J. Comp. and Adv. Pharm. 2022, 7, 54–64. [Google Scholar]
- Jelena, P.; Vesna, T. Š.; Jovana, K.; Jelena, K.; et al. (Cichorium intybus L.) as a food ingredient-Nutritional composition, bioactivity, safety, and health claims: A review. Food Chemistry 2021, 336, 127676. [Google Scholar]
- Khayrullina, Z.A.; Canarian, A.V. Phytochemical composition of chicory products (Cichoriumintybus L.). J. Bull. Int. Cold Academy.
- Nosov, A.M. Medicinal plants; EXMO-Press: Moscow, RU, 2000, p. 350. https://www.tursar.ru/page-joy.php?j=1650. [Google Scholar]
- Laurenov, G.V.; Lavrenov, V.K. Encyclopedia of Medicinal Plants 2016, 2, 1440.
- Popova, E.A.; Shatalova, T.A.; Michnik, L.A.; Michnik, O.V.; Hayrapetova, A.Y. Study of sales of medicinal plants by retail pharmacies and level of their consumption in sanatoriums on kmv. Mod. Prob. Sci. Edu. 2015, 3, 263–263. [Google Scholar]
- Lebeda, A.F.; Giurenko, N.I.; Isaikina, A.P.; Sobko, V.G. Medicinal plants, the most complete encyclopedia; ACT-Press: Moscow, RU, 2010; p. 494. [Google Scholar]
- Migliorini, A.A.; Piroski, C.S.; Daniel, T.G.; Cruz, T.M.; Escher, G.B.; Carmo, M.A.V.; Azevedo, L.; et al. Red Chicory (Cichorium Intybus) Extract Rich in Anthocyanins: Chemical Stability, Antioxidant Activity, and Antiproliferative Activity In Vitro. J. Food Sci. 2019, 84, 990–1001. [Google Scholar] [CrossRef]
- Janda, K.; Gutowska, I.; Geszke, M.M.; Jakubczyk, K. The common Cichory (Cichorium intybus L.) as a source of extracts with health-promoting properties-a review. Molecules 2021, 26, 1814. [Google Scholar] [CrossRef]
- Karolina, Ś.; Elżbieta, S.; Jan, O.; Joanna, K.A. Micelle mediated extraction as a new method of obtaining the infusion of Bidens tripartite. Acta Biochimica Polonica 2016, 63, 543–548. [Google Scholar]
- Uysal, S.; Ugurlu, A.; Zengin, G.; Baloglu, M.C.; Altunoglu, Y.C.; Mollica, A.; Mahomoodally, M. F. Novel in vitro and in silico insights of the multi-biological activities and chemical composition of Bidens tripartita L. Food and Chemical Toxicology 2018, 111, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Calitz, C.; Plessis, L.; Gouws, C.; Steyn, D.; Steenekamp, J.; Muller, C.; Hamman, S. Herbal hepatotoxicity: current status, examples, and challenges. Expert Opin Drug Metab Toxicol. 2015, 11, 1551–1565. [Google Scholar] [CrossRef] [PubMed]
- Boyko, N.N.; Bondarev, A.V.; Zhilyakova, E.T.; Pisarev, D.I.; Novikov, O.O. Phytodrugs, analysis of Russian Federation pharmaceutical market. Research Result. Medicine and Pharmacy.
- Oproshanskaya, T.V. Fatty acids from Bidens tripartita HERB. Chem. Nat. Comp. 2015, 51, 944–945. [Google Scholar] [CrossRef]
- Rodin, M.N.; Bokov, D.O.; Kovaleva, T.Yu.; Bobkova, N.V.; Sergunova, E.V.; Strelyaeva, A.V.; et al. Composition of biologically active compounds, biological and pharmacological activity of the three-part beggarticks (Bidens tripartita L.). Nveo - natural volatiles and essential oils Journal, 1105. [Google Scholar]
- Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed]
- Musaev, F.A.; Zakharova, O.A.; Musaeva, R.F. Medicinal plants (educational manual). Int. J. Exp. Edu. 2014, 11, 77–78. [Google Scholar]
- Karazhan, N.V.; Buzuk, G.N. Comparative study of morphological and anatomical-diagnostic signs of species of Bur-marigold herb. Phar. Bull. 2013, 1, 12–19. [Google Scholar]
- Tomczykowa, M.; et al. Composition of the Essential Oil of Bidens tripartita L. Roots and Its Antibacterial and Antifungal Activities. J. Med. Food 2011, 4, 428–433. [Google Scholar] [CrossRef]
- Andrew, C. Encyclopedia of Herbal Medicine; Dorling Kindersley: London, England, 2016; p. 336. [Google Scholar]
- Arkhipov, O.A.; Zhuravleva, V.V.; Alexandrova, M.V.; Alexandrov, T.V. Safety of Herbal Medicines: Clinical and Pharmacological Aspects Demidova. Scientific Centre for Expert Evaluation of Medicinal Products 2020, 8, 165–177. [Google Scholar] [CrossRef]
- Mironov, A.N.; Sakaeva, I.V.; Sakanyan, E.I.; Korsun, L.V.; Mochikina, O.A. Current approaches to standartization of herbal substasnce. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya. The Bull. Sci. Centre for Expert Evaluation of Med. Prod.
- Sambukova, T.V.; Ovchinnikov, B.V.; Ganapolski, V.P.; Yatmanov, A.N.; Shabanov, P.D. Prospects for phytopreparations use in modem pharmacology. Obzory po klinicheskoy farmakologii i lekarstvennoy terapii. Rev. Clinical Pharmacology Drug Therapy 2017, 15, 56–63 (In Russian). [Google Scholar] [CrossRef]
- Orhan, N. , İçöz, Ü. G., Altun, L., Aslan, M. Anti-hyperglycaemic and antioxidant effects of Bidens tripartita and quantitative analysis on its active principles. Iranian journal of basic medical sciences 2016, 19, 1114–1124. [Google Scholar] [CrossRef]
- Olisova, O.Y.; Snarskaya, E.S.; Gladko, V.V. , Burova, E.P. Russian traditional medicine in dermatology. Clin Dermatol. 2018, 36, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Kaskoniene, V.; et al. Essential oils of Bidens tripartita L. collected during period of 3 years composition variation analysis. Acta Physiol. Plant 2012, 7, 1056–1064. [Google Scholar]
- Tadić, V.M.; Nešić, I.; Martinović, M.; Rój, E.; Brašanac, V.S.; Maksimović, S.; Žugić, A. Old Plant, New Possibilities: Wild Bilberry (Vaccinium myrtillus L., Ericaceae) in Topical Skin Preparation. Antioxidants 2021, 10, 465. [Google Scholar] [CrossRef] [PubMed]
- Podwyszynska, M.; Mynett, K.; Markiewicz, M.; Pluta, S.; Marasek, C.A. Chromosome Doubling in Genetically Diverse Bilberry (Vaccinium myrtillus L.) Accessions and Evaluation of Tetraploids in Terms of Phenotype and Ability to Cross with Highbush Blueberry (V. corymbosum L.). Agronomy. [CrossRef]
- Kubentayev, S.A.; Suleimenov, A.N.; Kotukhov, J.A.; Danilova, A.N.; Sumbembayev, A.A. Phytocenotic characteristics and stocks of the main medicinal plants of the South-Western Altai (East Kazakhstan). Eur. J. BioSci. 2018, 12, 355–368. [Google Scholar]
- Tung, Y.T.; Wu, M.F.; Lee, M.C.; Wu, J.H.; Huang, C.C.; Huang, W.C. Antifatigue Activity and Exercise Performance of Phenolic-Rich Extracts from Calendula officinalis, Ribes nigrum, and Vaccinium myrtillus. Nutrients 2019, 11, 1715. [Google Scholar] [CrossRef] [PubMed]
- Musilova, J.; et al. The content of bioactive substances and their antioxidant effects in the European blueberry (Vaccinium myrtillus L.) influenced by different ways of their processing. J.Food Processing Preservation.
- Chehri, A.; et al. Phytochemical and pharmacological anti-diabetic properties of bilberries (Vaccinium myrtillus), recommendations for future studies. Primary care diabetes 2022, 16, 27–33. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; et al. Vaccinium myrtillus L. fruits as a novel source of phenolic compounds with health benefits and industrial applications-a review. Current pharmaceutical design, 1917. [Google Scholar] [CrossRef]
- Govindaraghavan, S. Pharmacopeial HPLC identification methods are not sufficient to detect adulterations in commercial bilberry (Vaccinium myrtillus) extracts. Anthocyanin profile provides additional clues. Anthocyanin profile provides additional clues. Fitoterapia 2014, 99, 124–138. [Google Scholar] [CrossRef]
- Güder, A.; Gür, M.; Engin, M.S. Antidiabetic and antioxidant properties of bilberry (Vaccinium myrtillus Linn.) fruit and their chemical composition. J. Agric. Sci. Tech.
- Drozd, J.; Anuszewska, E. Bilberry plant – prospects of new applications in prevention and supportive treatment of civilisation diseases. Prz. Med. Uniw. Rzesz. Inst. Leków.
- Kitagawa, S.; Yoshii, K.; Morita, S.Y.; Teraoka, R. Efficient topical delivery of chlorogenic acid by an oil-in-water microemulsion to protect skin against UV-induced damage. Chem. Pharmasevtical Bull. 2011, 59, 793–796. [Google Scholar] [CrossRef]
- Shivraj, H.N.; Hui, W.; Arti, N.; Xianmin, L.; Huilin, D.; Baskar, V.; Elwira, S.; Gansukh, E.; Guoyin, K. Comparative analysis of metabolic variations, antioxidant potential and cytotoxic effects in different parts of Chelidonium majus L. Food Chem. Toxicol. 2021, 156, 112483. [Google Scholar] [CrossRef]
- Maji, A.K.; Banerji, P. Chelidonium majus L. (Greater celandine)-a review on its phytochemical and therapeutic perspectives. Int. J. Herb. Med. /: https, 2015. [Google Scholar]
- Heba, F.; Gomaa, N.N.; Fadl, W.M.A.; Elmashad, D.M.A.; Fathia, A.M.; Khaled, G.A. Protective efficiency of Chelidonium majus extract against hepatoimmune and DNA changes induced by aflatoxin B1. J. Appl. Pharm. Sci. 2022, 12, 140–149. [Google Scholar] [CrossRef]
- Maciej, S.; Sławomir, D.; Beata, P.; Kamil, S.; Ireneusz, S.; Daniel, Z.; Rob, V.; Sylwia, Z.; Paweł, K.; Magdalena, W. Effectiveness of Volatile Natural Deep Eutectic Solvents (VNADESs) for the Green Extraction of Chelidonium majus Isoquinoline Alkaloids. Molecules 2022, 27, 2815. [Google Scholar] [CrossRef]
- Nawrot, J.; Wilk, J.M.; Nawrot, S.; Nawrot, K.; Wilk, B.; Dawid, P.R.; Urbanska, M.; Micek, I.; Nowak, G.; Gornowicz, P.J. Milky sap of greater celandine (Chelidonium majus L.) and anti-viral properties. Inter. ional Journal of Environmental Research and Public Health. [CrossRef]
- Jyoti, B.S. Chelidonium majus L.-a review on pharmacological activities and clinical effects. Global J. Res. Med. Plants Indigenous Med.
- Madjeed, H.K.; Dawood, S.H.; Hameed, N.M.; Mahdi, R.A.; Alkhafaje, W.K.; et al. l Investigation of in vitro Cytotoxicity of Chelidonium majus against Leishmania major. Archives of Razi Institute 2022, 77, 1211–1214. [Google Scholar] [CrossRef]
- Aidarkhanova, G.S. Biodiversity and ecological safety of rose hips (Rosa L.) in East Kazakhstan; Proceedings of the International scientific conference “Perspectives of medicinal plant science”; VILAR: Moscow, RU, 2018; pp. 101–105. [Google Scholar]
- Ikhsanov, Y.S.; Tasmagambetova, G.E.; Litvinenko, Y.A.; Burasheva, G.Sh.; Seitimova, G.A. Phytochemical composition of lipophilic fraction of plants of the plant Rosa Canina L. genus Rosa. News of the NAS of RK, Series Chemistry Technology; 2020, 2, 69–74:. [Google Scholar] [CrossRef]
- Kizatova, M.; Serik, B. Chemical composition and application of dog rose hips in various industries; Med. Pharmacy 2023, 140, 533–536. [Google Scholar]
- Roman, I.; Stănilă, A.; Stănilă, S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania; Chem. Cent. J. 2013 7, 73. 7. [CrossRef]
- Ahmad, N.; Anwar, F. Rose hip (Rosa canina L.) oils. In Essential oils in food preservation, flavor and safety; Academic Press: 2016, 667-675. [CrossRef]
- Kiralan, M.; Yildirim, G. Rosehip (Rosa canina L.) Oil. Fruit Oils: Chemistry Functionality; Springer Nature: Switzerland, 2019. [Google Scholar] [CrossRef]
- Vakhrameeva, M.G.; Denisova, L.V.; Nikitina, S.V.; Samsonov, S.K. Orchidei of our country; Science: Moscow, RU, 1991; p. 224. [Google Scholar]
- Teoh, E.S. Sources of medicinal orchids and conservation. Medicinal orchids of Asia 2016, 691–727. [Google Scholar] [CrossRef]
- Khadartsev, A.A.; Sukhiy, G.T.; Volochaeva, M.V.; Platonov, V.V.; Dunaeva, I.V. Chromato-mass spectrometry of ethanol extract of spotted (orcmaculate, orcmacular family). Herald of new medical technologies 2019, 4, 1–20. [Google Scholar] [CrossRef]
- Arora, M.; Mahajan, A.; Sembi, J.K. A Review on phytochemical and pharmacological potential of family Orchidaceae. Int. J. Pharm. Pharm. Res. 2017, 8, 9–24. [Google Scholar] [CrossRef]
- Brinkmann, J.A. Quick Scan of Orchidaceae Species in European Commerce as Components of Cosmetic, Food Med. Prod. 2014, 1, 22. [Google Scholar]
- Yapo, B.M. Pectic substances: From simple pectic polysaccharides to complex pectins - A new hypothetical model. Carbohydrate Polymers 2011, 86, 373–385. [Google Scholar] [CrossRef]
- Loseva, A.I.; Pozdnyakova, A.V.; Prosekov, A.Yu.; Ostapova, E.V.; et al. Callus Orchis maculata L. as a source of bioactive substances: biotechnology of cultivation. Bulletin of SUSU. Series Food Biotechnology 2021, 9, 13–22. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Pharmacological potential of Orchis mascula-A review. IOSR J. Pharmacy 2020, 10, 1–6. [Google Scholar]
- Rajamalar, P.; Kavisri, M.; Elangovan, M.; Vairamani, S.; Shanmugam, A.; Elumalai. P.; Seedevi, P. Chemical characterization of Orchis mascula and its antibacterial efficiency against clinical isolated human pathogenic bacteria. Chemical characterization of Orchis mascula and its antibacterial efficiency against clinical isolated human pathogenic bacteria. Biomass Convers. Biorefinery 2022, 1, 9. [Google Scholar] [CrossRef]
- Gantait, S.; Das, A.; Mitra, M.; Chen, J.T. Secondary metabolites in orchids: Biosynthesis, medicinal uses, and biotechnology. South African Journal of Botany 2021, 139, 338–351. [Google Scholar] [CrossRef]
- Filippava, S.N.; Ditchenko, T.I.; Lohvina, H.O.; Yurin, V.M. Development of an effective method for deposition of callus cultures of valuable medicinal plants. Proceedings of BSU.
- Abdul-hafiz, I.Y.; Egorov, M.A.; Suchenko, L.T. Antibacterial activity of essential oil and alcohol extracts of air marsh (Acorus calamus) and camel thorn (Alhagi pseudalhagi), collected in the Astrakhan region. Vestnik Altai State Agrarian University 2011, 3, 50–53 (In Russian). (In Russian) [Google Scholar]
- Guryev, A.M.; Pozhan, I.S. Research of the chemical composition of rhizomes Acorus calamus L. Collection of articles on the materials of the fourth congress of young scientists and specialists; Sciences about man: Tomsk, RU, 2003; p. 197. [Google Scholar]
- Kim, H.; Han, T.H.; Lee, S.G. Anti-inflammatory activity of a water extract of Acorus calamus L. leaves on keratinocyte HaCaT cells. leaves on keratinocyte HaCaT cells. J. ethnopharmacol. 2009, 122, 149–156. [Google Scholar] [CrossRef]
- Khwairakpam, A.D.; et al. Acorus calamus: a bio-reserve of medicinal values. J. basic and clinical physiology and pharmacology 2018, 29, 107–122. [Google Scholar] [CrossRef]
- Kumar, A. Medicinal properties of Acorus calamus. J. Drug Delivery Therapeutics. 2013, 3, 143–144. [Google Scholar] [CrossRef]
- Yende, S.; et al. Pharmacological profile of Acorus calamus: an overview. Pharmacognosy Rev. 2008, 2, 23. [Google Scholar]
- Singh, R.; Sharma, P.K.; Malviya, R. Pharmacological properties and ayurvedic value of Indian buch plant (Acorus calamus): a short review. Adv. Biol. Res. 2011, 5, 145–154 http://wwwidosiorg/abr/5/3pdf. [Google Scholar]
- Marongiu, B.; et al. Chemical composition of the essential oil and supercritical CO2 extract of Commiphora myrrha (Nees) Engl. and of Acorus calamus L. and of Acorus calamus L. J. Agric. Food Chem. 2005, 53, 7939–7943. [Google Scholar] [CrossRef]
- Balakumbahan, R.; et al. Acorus calamus: An overview. J. Med. Plants Res. 2010, 4, 2740–2745. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
