Submitted:
21 April 2023
Posted:
23 April 2023
Read the latest preprint version here
Abstract
Keywords:
Introduction
Cardiotoxicity
Definition
Chemotherapeutic drugs
Anthracyclines
Nucleotide synthesis inhibitors
Alkylating agents
Tyrosine kinase inhibitors
Anti- microtubule agents
Cisplatin
Monoclonal antibodies
Proteasome inhibitors
Risk factors
Imaging
Biomarkers
Omics
Genomics
Transcriptomics
Proteomics
Metabolomics
Conclusions
Funding
Disclosure of interest
Abbreviations
| ABC | Adenosine triphosphate-binding cassette transporter |
| ABCC2 | ATP Binding Cassette Subfamily C Member 2 |
| ACT | Anthracycline-related cardiotoxicity |
| ALL | Acute lymphoblastic leukemia |
| BNP | B-type natriuretic peptide |
| CBR | Carbonyl reductase |
| CELF4 | CUGBP Elav-Like Family Member 4 |
| CHF | Congestive heart failure |
| CP | Cyclophosphamide |
| CMR | Cardiac magnetic resonance imaging |
| CRP | C-reactive protein |
| CVAEs | Cardiovascular adverse events |
| DOX | Doxorubicin |
| ECG | Electrocardiography |
| EVs | Extracellular vesicles |
| GC | Gas chromatography |
| GDF-15 | Growth/differentiation factor 15 |
| GLS | Global systolic longitudinal myocardial strain |
| HER2 | Human epidermal growth factor receptor 2 |
| HF | Heart failure |
| IFO | Ifosfamide |
| LC | Liquid chromatography high performance |
| LC-MS | Liquid chromatography-mass spectrometry |
| LPC | Lysophosphatidylcholine |
| LV | Left verticular |
| LVD | Left ventricular dysfunction |
| LVEF | Left ventricular ejection fraction |
| miRNAs | MicroRNAs |
| mRNAs | Messenger RNAs |
| MPI | Myocardial perfusion imaging |
| MS | Molecular mass spectrometry |
| MUGA | Nuclear cardiac imaging |
| NMR | Nuclear magnetic resonance spectrometry |
| NOTCH1 | Neurogenic locus notch homolog protein 1 |
| NT-proBNP | N-terminal pro b-natriuretic peptide |
| PET | Position emission tomography |
| PYGB | Glycogen phosphorylase |
| RARG | Retinoic acid receptor gamma |
| SAL | Saline |
| SLC | Solute carrier transporters |
| SNP | Single-nucleotide polymorphism |
| SPECT | Single photon emission computed tomography |
| SVM | Vector machine |
| TKI | Tyrosine kinase inhibitors |
| TCA | Tricarboxylic acid |
| TnT | Troponin T |
| TOP2 | Topoisomerase II |
| Top2β | Topoisomerase-II β |
| UGT1A6 | Glucuronosyltransferase family |
| UPLC-QqTOF HRMS | Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry |
| VEGF | Vascular endothelial growth factor |
| vWF | Von Willebrand factor |
| 2D | Two-dimensional Echocardiography |
| 5-FU | Fluorouracil |
References
- Pritchard-Jones, K.; Bergeron, C.; de Camargo, B.; van den Heuvel-Eibrink, M.M.; Acha, T.; Godzinski, J.; Oldenburger, F.; Boccon-Gibod, L.; Leuschner, I.; Vujanic, G.; et al. Omission of doxorubicin from the treatment of stage II–III, intermediate-risk Wilms' tumour (SIOP WT 2001): an open-label, non-inferiority, randomised controlled trial. Lancet 2015, 386, 1156–1164. [Google Scholar] [CrossRef]
- Ampatzidou, M.; Kelaidi, C.; Dworzak, M.N.; Polychronopoulou, S. Adolescents and young adults with acute lymphoblastic leukemia and acute myeloid leukemia. memo - Mag. Eur. Med Oncol. 2017, 11, 47–53. [Google Scholar] [CrossRef]
- Ampatzidou, M.; Panagiotou, J.P.; Paterakis, G.; Papadakis, V.; Papadhimitriou, S.I.; Parcharidou, A.; Papargyri, S.; Rigatou, E.; Avgerinou, G.; Tsitsikas, K.; et al. Childhood acute lymphoblastic leukemia: 12 years of experience, using a Berlin–Frankfurt–Münster approach, in a Greek center. Leuk. Lymphoma 2014, 56, 251–255. [Google Scholar] [CrossRef]
- Polychronopoulou, S.; Baka, M.; Servitzoglou, M.; Papadakis, V.; Pourtsidis, A.; Avgerinou, G.; Abatzidou, M.; Kosmidis, H. Treatment and clinical results in childhood AML in Greece. memo - Mag. Eur. Med Oncol. 2014, 7, 50–55. [Google Scholar] [CrossRef]
- Georgakis, M.K.; Karalexi, M.A.; Agius, D.; Antunes, L.; Bastos, J.; Coza, D.; Demetriou, A.; Dimitrova, N.; Eser, S.; Florea, M.; et al. Incidence and time trends of childhood lymphomas: findings from 14 Southern and Eastern European cancer registries and the Surveillance, Epidemiology and End Results, USA. Cancer Causes Control. 2016, 27, 1381–1394. [Google Scholar] [CrossRef]
- Petridou, E.T.; Dimitrova, N.; Eser, S.; Kachanov, D.; Karakilinc, H.; Varfolomeeva, S.; Belechri, M.; Baka, M.; Moschovi, M.; Polychronopoulou, S.; et al. Childhood leukemia and lymphoma: time trends and factors affecting survival in five Southern and Eastern European Cancer Registries. Cancer Causes Control. 2013, 24, 1111–1118. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Hear. J. - Cardiovasc. Imaging 2022, 23, e333–e465. [Google Scholar] [CrossRef]
- Herrmann, J.; Lenihan, D.; Armenian, S.; Barac, A.; Blaes, A.; Cardinale, D.; Carver, J.; Dent, S.; Ky, B.; Lyon, A.R.; et al. Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. Eur. Hear. J. 2022, 43, 280–299. [Google Scholar] [CrossRef]
- Chow, E.J.; Leger, K.J.; Bhatt, N.S.; A Mulrooney, D.; Ross, C.J.; Aggarwal, S.; Bansal, N.; Ehrhardt, M.J.; Armenian, S.H.; Scott, J.M.; et al. Paediatric cardio-oncology: epidemiology, screening, prevention, and treatment. Cardiovasc. Res. 2019, 115, 922–934. [Google Scholar] [CrossRef]
- Madeddu, C.; Deidda, M.; Piras, A.; Cadeddu, C.; Demurtas, L.; Puzzoni, M.; Piscopo, G.; Scartozzi, M.; Mercuro, G. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J. Cardiovasc. Med. 2016, 17, e12–e18. [Google Scholar] [CrossRef]
- Franco, V.I.; Lipshultz, S.E. Cardiac complications in childhood cancer survivors treated with anthracyclines. Cardiol Young. 2015, 25 Suppl 2, 107–116. [Google Scholar] [CrossRef]
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics, 2014. CA: A Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Mulrooney, D.A.; Yeazel, M.W.; Leisenring, W.M.; Kawashima, T.; Mertens, A.C.; Mitby, P.; Stovall, M.; Donaldson, S.S.; Green, D.M.; Sklar, C.A; et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ 2009, 339, b4606. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Amdani, S.; Lipshultz, E.R.; Lipshultz, S.E. Chemotherapy-induced cardiotoxicity in children. Expert Opin. Drug Metab. Toxicol. 2017, 13, 817–832. [Google Scholar] [CrossRef] [PubMed]
- Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, D.B.; Peng, X.; Chen, B.; Pentassuglia, L.; Lim, C.C. Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis. 2010, 53, 105–13. [Google Scholar] [CrossRef]
- Simbre, V.C.; Duffy, S.A.; Dadlani, G.H.; Miller, T.L.; Lipshultz, S.E. Cardiotoxicity of cancer chemotherapy: implications for children. Paediatr Drugs. 2005, 7, 187–202. [Google Scholar] [CrossRef]
- Herrmann, J.; Lerman, A.; Sandhu, N.P.; Villarraga, H.R.; Mulvagh, S.L.; Kohli, M. Evaluation and Management of Patients With Heart Disease and Cancer: Cardio-Oncology. Mayo Clin. Proc. 2014, 89, 1287–1306. [Google Scholar] [CrossRef]
- Sayed-Ahmed, M.M.; Aldelemy, M.L.; Al-Shabanah, O.A.; Hafez, M.M.; Al-Hosaini, K.A.; Al-Harbi, N.O.; Al-Sharary, S.D.; Al-Harbi, M.M. Inhibition of Gene Expression of Carnitine Palmitoyltransferase I and Heart Fatty Acid Binding Protein in Cyclophosphamide and Ifosfamide-Induced Acute Cardiotoxic Rat Models. Cardiovasc. Toxicol. 2014, 14, 232–242. [Google Scholar] [CrossRef]
- Rhea, I.B.; Oliveira, G.H. Cardiotoxicity of Novel Targeted Chemotherapeutic Agents. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 53. [Google Scholar] [CrossRef]
- Zhang, K.; Heidrich, F.M.; DeGray, B.; Boehmerle, W.; Ehrlich, B.E. Paclitaxel accelerates spontaneous calcium oscillations in cardiomyocytes by interacting with NCS-1 and the InsP3R. J. Mol. Cell. Cardiol. 2010, 49, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Inukai, T.; Imamura, T.; Yano, M.; Tomoyasu, C.; Lucas, D.M.; Nemoto, A.; Sato, H.; Huang, M.; Abe, M.; et al. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines. PLOS ONE 2017, 12, e0188680–e0188680. [Google Scholar] [CrossRef]
- Shah, C.; Bishnoi, R.; Jain, A.; Bejjanki, H.; Xiong, S.; Wang, Y.; Zou, F.; Moreb, J.S. Cardiotoxicity associated with carfilzomib: systematic review and meta-analysis. Leuk Lymphoma. 2018, 59, 2557–2569. [Google Scholar] [CrossRef] [PubMed]
- Waxman, A.J.; Clasen, S.C.; Garfall, A.L.; Carver, J.R.; Vogl, D.T.; O'Quinn, R.; Cohen, A.D.; Stadtmauer, E.A.; Ky, B.; Weiss, B.M. Carfilzomib-associated cardiovascular adverse events: A systematic review and meta-analysis. J. Clin. Oncol. 2017, 35, 8018–8018. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Karnik, R.; Sambatakos, P.; Franco, V.I.; Ross, S.W.; Miller, T.L. Anthracycline-related cardiotoxicity in childhood cancer survivors. Curr. Opin. Cardiol. 2014, 29, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Manrique, C.R.; Park, M.; Tiwari, N.; Plana, J.C.; Garcia, M.J. Diagnostic strategies for early recognition of cancer therapeutics-related cardiac dysfunction. Clin Med Insights Cardiol 2017, 11, 1179546817697983. [Google Scholar] [CrossRef]
- Von Hoff, D.D.; Layard, M.W.; Basa, P.; Davis, H.L., Jr.; Von Hoff, A.L.; Rozencweig, M.; Muggia, F.M. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979, 91, 710–717. [Google Scholar] [CrossRef]
- Nysom, K.; Holm, K.; Lipsitz, S.R.; Mone, S.M.; Co- lan, S.D.; Orav, E.J.; Sallan, S.E.; Olsen, J.H.; Hertz, H.; Jacobsen, J.R.; Lipshultz, S.E. Relationship be- tween cumulative anthracycline dose and late cardiotoxicity in childhood acute lympho- blastic leukemia. J Clin Oncol 1998, 16, 545–550. [Google Scholar] [CrossRef]
- Vandecruys, E.; Mondelaers, V.; De Wolf, D.; Benoit, Y.; Suys, B. Late cardiotoxicity after low dose of anthracycline therapy for acute lymphoblastic leukemia in childhood. J Cancer Surviv 2012, 6, 95–101. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Adams, M.J. Cardiotoxicity after childhood cancer: beginning with the end in mind. J Clin Oncol 2010, 28, 1276–1281. [Google Scholar] [CrossRef]
- Van der Pal, H.J.; van Dalen, E.C.; Hauptmann, M.; Kok, W.E.; Caron, H.N.; van den Bos, C.; Ol- denburger, F.; Koning, C.C.; van Leeuwen, F.E.; Kremer, L.C. Cardiac function in 5-year survivors of childhood cancer: a long-term follow- up study. Arch Intern Med 2010, 170, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Brickler, M.; Raskin, A.; Ryan, T.D. Current State of Pediatric Cardio-Oncology: A Review. Children 2022, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Loar, R.W.; Noel, C.V.; Tunuguntla, H.; Colquitt, J.L.; Pignatelli, R.H. State of the art review: Chemotherapy-induced cardiotoxicity in children. Congenit. Hear. Dis. 2017, 13, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Mornoş, C.; Manolis, A.J.; Cozma, D.; Kouremenos, N.; Zacharopoulou, I.; Ionac, A. The value of left ventricular global longitudinal strain assessed by three-dimensional strain imaging in the early detection of anthracyclinemediated cardiotoxicity. . 2014, 55, 235–44. [Google Scholar] [PubMed]
- Lipshultz, S.E.; Miller, T.L.; Scully, R.E.; Lipsitz, S.R.; Rifai, N.; Silverman, L.B.; et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012, 30, 1042–9. [Google Scholar] [CrossRef]
- Mavinkurve-Groothuis, A.M.; Groot-Loonen, J.; Bellersen, L.; Pourier, M.S.; Feuth, T.; Bokkerink, J.P.; Hoogerbrugge, P.M.; Kapusta, L. Abstract 5949: Abnormal NT-Pro-BNP Levels in Asymptomatic Long Term Survivors of Childhood Cancer Treated with Anthracyclines. Circulation 2009, 118, 631–6. [Google Scholar] [CrossRef]
- Sherief, L.M.; Kamal, A.G.; Khalek, E.A.; Kamal, N.M.; Soliman, A.A.A.; Esh, A.M. Biomarkers and early detection of late onset anthracycline-induced cardiotoxicity in children. Hematology 2012, 17, 151–156. [Google Scholar] [CrossRef]
- Dixon, S.B.; Howell, C.R.; Lu, L.; Plana, J.C.; Joshi, V.M.; Luepker, R.V.; Durand, J.B.; Ky, B.; Lenihan, D.J.; Jefferies, J.L.; et al. Cardiac biomarkers and association with subsequent cardiomyopathy and mortality among adult survivors of childhood cancer: A report from the St. Jude Lifetime Cohort. Cancer 2021, 127, 458–466. [Google Scholar] [CrossRef]
- Armenian, S.H.; Gelehrter, S.K.; Vase, T.; Venkatramani, R.; Landier, W.; Wilson, K.D.; Herrera, C.; Reichman, L.; Menteer, J.-D.; Mascarenhas, L.; et al. Screening for Cardiac Dysfunction in Anthracycline-Exposed Childhood Cancer Survivors. Clin. Cancer Res. 2014, 20, 6314–6323. [Google Scholar] [CrossRef]
- Lam, E.; Higgins, V.; Zhang, L.; Chan, M.K.; Bohn, M.K.; Trajcevski, K.; Liu, P.; Adeli, K.; Nathan, P.C. Normative Values of High-Sensitivity Cardiac Troponin T and N-Terminal pro-B-Type Natriuretic Peptide in Children and Adolescents: A Study from the CALIPER Cohort. J. Appl. Lab. Med. 2021, 6, 344–353. [Google Scholar] [CrossRef]
- Singh, D.; Thakur, A.; Tang, W.H.W. Kaufman Utilizing Cardiac Biomarkers to Detect and Prevent Chemotherapy-induced Cardiomyopathy. Clin Biochem. 2015, 48, 223–235. [Google Scholar]
- Christenson, E.S.; James, T.; Agrawal, V.; Park, B.H. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin. Biochem. 2015, 48, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Biasillo, G.; Salvatici, M.; Sandri, M.T.; Cipolla, C.M. Using biomarkers to predict and to prevent cardiotoxicity of cancer therapy. Expert Rev. Mol. Diagn. 2017, 17, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Horacek, J.M.; Jebavy, L.; Vasatova, M.; Pudil, R.; Tichy, M.; Jakl, M.; Maly, J. Glycogen phosphorylase BB as a potential marker of cardiac toxicity in patients treated with anthracyclines for acute leukemia. Bratisl. Med J. 2013, 114, 708–710. [Google Scholar] [CrossRef] [PubMed]
- Horacek, J.; Vasatova, M.; Tichy, M.; Pudil, R.; Jebavy, L.; Malý, J. The use of cardiac biomarkers in detection of cardiotoxicity associated with conventional and high-dose chemotherapy for acute leukemia. . 2010, 32. [Google Scholar]
- Horacek, J.M.; Tichy, M.; Jebavy, L.; Pudil, R.; Ulrychova, M. Maly Use of multiple biomarkers for evaluation of anthracycline-induced cardiotoxicity in patients with acute myeloid leukemia. J. Exp Oncol. 2008, 30, 157–9. [Google Scholar]
- Horacek, J.M. 1.; Vasatova, M.; Pudil, R.; Tichy, M.; Zak, P.; Jakl, M.; Jebavy, L.; Maly, J. Biomarkers for the early detection of anthracycline-induced cardiotoxicity: current status. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014, 158, 511–7. [Google Scholar] [CrossRef]
- Cao, L.; Zhu, W.; Wagar, E.A.; Meng, Q.H. Biomarkers for monitoring chemotherapy-induced cardiotoxicity. Crit. Rev. Clin. Lab. Sci. 2017, 54, 87–101. [Google Scholar] [CrossRef]
- Arslan, D.; Cihan, T.; Kose, D.; Vatansev, H.; Cimen, D.; Koksal, Y.; Oran, B.; Akyurek, F. Growth-differentiation factor-15 and tissue doppler ımaging in detection of asymptomatic anthracycline cardiomyopathy in childhood cancer survivors. Clin Biochem. 2013, 46, 1239–43. [Google Scholar] [CrossRef]
- Armenian, S.; Bhatia, S. Predicting and Preventing Anthracycline-Related Cardiotoxicity. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 3–12. [Google Scholar] [CrossRef]
- Aminkeng, F.; Bhavsar, A.P.; Visscher, H.; Rassekh, S.R.; Li, Y.; Lee, J.W.; Brunham, L.R.; Caron, H.N.; van Dalen, E.C.; Kremer, L.C.; van der Pal, H.J.; Amstutz, U.; Rieder, M.J.; Bernstein, D.; Carleton, B.C.; Hayden, M.R.; Ross, C.J. Canadian Pharmacogenomics Network for Drug Safety Consortium. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015, 47, 1079–84. [Google Scholar] [CrossRef] [PubMed]
- Madonna, R. Early diagnosis and prediction of anticancer drug-induced cardiotoxicity: from cardiac imaging to “Omics” technologies. Rev Espanol Cardiol 2017, 70, 576–582. [Google Scholar] [CrossRef]
- Linschoten, M.; Teske, A.J.; Cramer, M.J.; van der Wall, E.; Asselbergs, F.W. Chemotherapy-Related Cardiac Dysfunction: A Systematic Review of Genetic Variants Modulating Individual Risk. Circ Genom Precis Med. 2018, 11, e001753. [Google Scholar] [CrossRef] [PubMed]
- Visscher, H.; Ross CJ, D.; Rassekh, S.R.; Sandor GS, S.; Caron, H.N.; Van Dalen, E.C.; Kremer, L.C.; van der Pal, H.J.; Rogers, P.C.; Rieder, M.J.; et al. Validation of Variants in SLC28A3 and UGT1A6 as Genetic Markers Predictive of Anthracycline-Induced Cardiotoxicity in Children, Carleton, PharmD,M.R. Hayden, MB, ChB, PhD, and the CPNDS Consortium. Pediatr Blood Cancer 2013, 60, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Visscher, H.; Rassekh, S.R.; Sandor, G.S.; et al.; CPNDS Consorum Genec variants in SLC22A17 and SLC22A7 are associated with anthracycline- induced cardiotoxicity in children. Pharmacogenomics. 2015, 16, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Visscher, H.; Ross, C.J.; Rassekh, S.; Barhdadi, A.; Dubé, M.P.; Al-Saloos, H.; Sandor, G.S.; Caron, H.N.; van Dalen, E.C.; Kremer, L.C.; et al. Pharmacogenomic Prediction of Anthracycline-Induced Cardiotoxicity in Children. J Clin Oncol 30, 1422–1428. [CrossRef] [PubMed]
- Sági, J.C.; Egyed, B.; Kelemen, A.; Kutszegi, N.; Hegyi, M.; Gézsi, A.; Herlitschke, M.A.; Rzepiel, A.; Fodor, L.E.; Ottóffy, G.; et al. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer 2018, 18, 704. [Google Scholar] [CrossRef]
- Aminkeng, F.; Ross, C.J.D.; Rassekh, S.R.; Hwang, S.; Rieder, M.J.; Bhavsar, A.P.; Smith, A.; Sanatani, S.; Gelmon, K.A.; Bernstein, D.; et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016, 82, 683–695. [Google Scholar] [CrossRef]
- Marcoux, S.; Drouin, S.; Laverdière, C.; Alos, N.; Andelfinger, G.U.; Bertout, L.; Curnier, D.; Friedrich, M.G.; Kritikou, E.A.; Lefebvre, G.; et al. The PETALE study: Late adverse effects and biomarkers in childhood acute lymphoblastic leukemia survivors. Pediatr. Blood Cancer 2016, 64. [Google Scholar] [CrossRef]
- Kashyap, V.; Laursen, K.B.; Brenet, F.; Viale, A.J.; Scandura, J.M.; Gudas, L.J. RARgamma is essential for retinoic acid induced chromatin remodeling and transcriptional activation in embryonic stem cells. J Cell Sci 2013, 126, 999–1008. [Google Scholar]
- Krajinovic, M.; Elbared, J.; Drouin, S.; Bertout, L.; Rezgui, A.; Ansari, M.; Raboisson, M.-J.; E Lipshultz, S.; Silverman, L.B.; E Sallan, S.; et al. Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015, 16, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Semsei, A.F.; Erdelyi, D.J.; Ungvari, I.; Csagoly, E.; Hegyi, M.Z.; Kiszel, P.S.; Lautner-Csorba, O.; Szabolcs, J.; Masat, P.; Fekete, G.; et al. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol. Int. 2012, 36, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, L.; Kulle, B.; Schirmer, M.; Schlüter, G.; Schmidt, A.; Rosenberger, A.; Vonhof, S.; Bickeböller, H.; Toliat, M.R.; Suk, E.-K.; et al. NAD(P)H Oxidase and Multidrug Resistance Protein Genetic Polymorphisms Are Associated With Doxorubicin-Induced Cardiotoxicity. Circ. 2005, 112, 3754–3762. [Google Scholar] [CrossRef] [PubMed]
- Vulsteke, C.; Pfeil, A.M.; Maggen, C.; Schwenkglenks, M.; Pettengell, R.; Szucs, T.D.; Lambrechts, D.; Dieudonné, A.-S.; Hatse, S.; Neven, P.; et al. Clinical and genetic risk factors for epirubicin-induced cardiac toxicity in early breast cancer patients. Breast Cancer Res. Treat. 2015, 152, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.G.; Leisenring, W.M.; Gonzalez-Covarrubias, V.M.; Kawashima, T.I.; Davies, S.M.; Relling, M.V.; Robison, L.L.; Sklar, C.A.; Stovall, M.; Bhatia, S. Genetic polymorphisms in the carbonyl reductase 3 geneCBR3 and the NAD(P)H:quinone oxidoreductase 1 geneNQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer 2008, 112, 2789–2795. [Google Scholar] [CrossRef]
- Blanco, J.G.; Sun, C.L.; Landier, W.; et al. Anthracycline-related cardiomyopathy aer childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the Children’s Oncology Group. J Clin Oncol. 2012, 30, 1415–1421. [Google Scholar] [CrossRef]
- Wang, X.; Sun, C.L.; Quiñones-Lombraña, A.; et al. CELF4 variant and anthracycline-related cardiomyopathy: a Children’s Oncology Group genome-wide associaon study. J Clin Oncol. 2016, 34, 863–870. [Google Scholar] [CrossRef]
- Vos, H.I.; Coenen, M.J.; Guchelaar, H.-J.; Loo, D.M.W.T. The role of pharmacogenetics in the treatment of osteosarcoma. Drug Discov. Today 2016, 21, 1775–1786. [Google Scholar] [CrossRef]
- Leong, S.L.; Chaiyakunapruk, N.; Lee, S.W.H. Candidate Gene Association Studies of Anthracycline-induced Cardiotoxicity: A Systematic Review and Meta-analysis. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- McOwan, T.N.; Craig, L.A.; Tripdayonis, A.; Karavendzas, K.; Cheung, M.M.; Porrello, E.R.; Conyers, R.; Elliott, D.A. Evaluating anthracycline cardiotoxicity associated single nucleotide polymorphisms in a paediatric cohort with early onset cardiomyopathy. Cardio-Oncology 2020, 6, 1–6. [Google Scholar] [CrossRef]
- Petrykey, K.; Andelfinger, G.U.; Laverdière, C.; Sinnett, D.; Krajinovic, M. Genetic factors in anthracycline-induced cardiotoxicity in patients treated for pediatric cancer. Expert Opin Drug Metab Toxicol. 2020, 16, 865–883. [Google Scholar] [CrossRef] [PubMed]
- Lipshultz, S.E.; Lipsitz, S.R.; Kutok, J.L.; et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2013, 119, 3555–3562. [Google Scholar] [CrossRef] [PubMed]
- Oatmen, K.E.; Toro-Salazar, O.H.; Hauser, K.; Zellars, K.N.; Mason, K.C.; Hor, K.; Gillan, E.; Zeiss, C.J.; Gatti, D.M.; Spinale, F.G. Identification of a novel microRNA profile in pediatric patients with cancer treated with anthracycline chemotherapy. Am. J. Physiol. Circ. Physiol. 2018, 315, H1443–H1452. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Carvalho, V.; Ferreira, L.R.P.; Bocchi, E.A. Circulating mir-208a fails as a biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients. J Appl Toxicol 2015, 35, 1071–1072. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, E.; Siasos, G.; Tousoulis, D.; Kokkou, E.; Genimata, V.; Zisimos, K.; Latsios, G.; Stefanadis, C. Diagnostic and therapeutic potentials of microRNAs in heart failure. Curr. Top. Med. Chem. 2013, 13, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, N.; Tousoulis, D.; Androulakis, E.; Siasos, G.; Briasoulis, A.; Vogiatzi, G.; Kampoli, A.-M.; Tsiamis, E.; Tentolouris, C.; Stefanadis, C. The role of microRNAs in cardiovascular disease. Curr. Med. Chem. 2012, 19, 2605–2610. [Google Scholar] [CrossRef]
- Ruggeri, C.; Gioffre, S.; Achilli, F.; Colombo, G.I.; D’Alessandra, Y. Role of microRNAs in doxorubicin-induced cardiotoxicity: an overview of preclinical models and cancer patients. Heart Fail Rev 2018, 23, 109–122. [Google Scholar] [CrossRef]
- Holmgren, G.; Synnergren, J.; Andersson, C.X.; Lindahl, A.; Sartipy, P. MicroRNAs as potential biomarkers for doxorubicininduced cardiotoxicity. Toxicol In Vitro 2016, 34, 26–34. [Google Scholar] [CrossRef]
- Ludwig, N.; Leidinger, P.; Becker, K.; et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res 2016, 44, 3865–3877. [Google Scholar] [CrossRef]
- Skála Mikulas, · Barbora Hanousková · Lenka Skálová · Petra Matoušková.
- MicroRNAs in the diagnosis and prevention of drug-induced Cardiotoxicity, Archives of Toxicology, November 2018 .
- Zhou, S.S.; Jin, J.P.; Wang, J.Q.; Zhang, Z.G.; Freedman, J.H.; Zheng, Y.; Cai, L. MiRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018, 39, 1073–1084. [Google Scholar] [CrossRef]
- Pellegrini, L.; Sileno, S.; D’agostino, M.; Foglio, E.; Florio, M.C.; Guzzanti, V.; Russo, M.A.; Limana, F.; Magenta, A. MicroRNAs in Cancer Treatment-Induced Cardiotoxicity. Cancers 2020, 12, 704. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, Y.; Ono, K.; Horie, T.; et al. Increased MicroRNA-1 and MicroRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 2011, 4, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Rigaud, V.O.C.; Ferreira, L.R.P.; Ayub-Ferreira, S.M.; et al. Circulating miR-1 as a potential biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients. Oncotarget 2017, 8, 6994–7002. [Google Scholar] [CrossRef] [PubMed]
- Leger, K.J.; Leonard, D.; Nielson, D.; de Lemos, J.A.; Mammen, P.P.; Winick, N.J. Circulating microRNAs: Potential Markers of Cardiotoxicity in Children and Young Adults Treated With Anthracycline Chemotherapy. J. Am. Hear. Assoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.N.; Konorev, E.A.; Aggarwal, D.; Kalyanaraman, B. Analysis of Proteome Changes in Doxorubicin-Treated Adult Rat Cardiomyocyte. J Proteomics 2011, 74, 683–97. [Google Scholar] [CrossRef] [PubMed]
- Creemers, E.E.; Tijsen, A.J.; Pinto, Y.M. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012, 110, 483–95. [Google Scholar] [CrossRef] [PubMed]
- Todorova, V.K.; Makhoul, I.; Wei, J.N.; Klimberg, V.S. Circulating miRNA profiles of doxorubicin-induced cardiotoxicity in breast cancer patients. Ann Clin Lab Sci 2017, 47, 115–119. [Google Scholar]
- Zhao, Z.Y.; He, J.; Zhang, J.; et al. Dysregulated miR1254 and miR579 for cardiotoxicity in patients treated with bevacizumab in colorectal cancer. Tumor Biol 2014, 35, 5227–5235. [Google Scholar] [CrossRef]
- Petricoin, E.F.; Rajapaske, V.; Herman, E.H.; Arekani, A.M.; Ross, S.; Johann, D.; Knapton, A.; Zhang, J.; Hitt, B.A.; Conrads, T.P.; et al. Toxicoproteomics: Serum Proteomic Pattern Diagnostics for Early Detection of Drug Induced Cardiac Toxicities and Cardioprotection. Toxicol. Pathol. 2004, 32, 122–130. [Google Scholar] [CrossRef]
- Ohyama, K.; Tomonari, M.; Ichibangase, T.; To, H.; Kishikawa, N.; Nakashima, K.; Imai, K.; Kuroda, N. A toxicoproteomic study on cardioprotective effects of pre-administration of docetaxel in a mouse model of adriamycin-induced cardiotoxicity. Biochem. Pharmacol. 2010, 80, 540–547. [Google Scholar] [CrossRef]
- Desai, V.G.; Lee, T.; Moland, C.L.; Vijay, V.; Han, T.; Lewis, S.M.; Herman, E.H.; Fuscoe, J.C. Candidate early predictive plasma protein markers of doxorubicin-induced chronic cardiotoxicity in B6C3F1 mice. Toxicol. Appl. Pharmacol. 2019, 363, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Yarana, C.; Carroll, D.; Chen, J.; Chaiswing, L.; Zhao, Y.; Noel, T.; Alstott, M.; Bae, Y.; Dressler, E.V.; Moscow, J.A.; Butterfield, D.A.; Zhu, H.; Clair, D.K.S. Extracellular Vesicles Released by Cardiomyocytes in a Doxorubicin-Induced Cardiac Injury Mouse Model Contain Protein Biomarkers of Early Cardiac Injury. Clin Cancer Res 2018, 24, 1644–1653. [Google Scholar] [CrossRef] [PubMed]
- Claudino, W.M.; Goncalves, P.H.; di Leo, A.; Philip, P.A.; Sarkar, F.H. Metabolomics in cancer: A bench-to-bedside intersection. Critical Reviews in Oncology/Hematology 2012, 84, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Asnani, A.; Gerszten, R.E. Application of metabolomics to cardiovascular biomarker and pathway discovery. J Am Coll Cardiol. 2008, 52, 117–23. [Google Scholar] [CrossRef]
- Deidda, M.; Mercurio, V.; Cuomo, A.; Noto, A.; Mercuro, G.; Dessalvi, C.C. Metabolomic Perspectives in Antiblastic Cardiotoxicity and Cardioprotection. Int. J. Mol. Sci. 2019, 20, 4928. [Google Scholar] [CrossRef]
- Armenian, S.H.; Gelehrter, S.K.; Vase, T.; Venkatramani, R.; Landier, W.; Wilson, K.D.; Herrera, C.; Reichman, L.; Menteer, J.-D.; Mascarenhas, L.; Freyer, D.R.; Venkataraman, K.; Bhatia, S. Carnitine and cardiac dysfunction in childhood cancer survivors treated with anthracyclines. Cancer Epidemiol Biomarkers Prev. 2014, 23, 1109–1114. [Google Scholar] [CrossRef]
- Li, Y.; Ju, L.; Hou, Z.; Deng, H.; Zhang, Z.; Wang, L.; Yang, Z.; Yin, J.; Zhang, Y. Screening, Verification, and Optimization of Biomarkers for Early Prediction of Cardiotoxicity Based on Metabolomics. J. Proteome Res. 2015, 14, 2437–2445. [Google Scholar] [CrossRef]
- Schnackenberg, L.K.; Pence, L.; Vijay, V.; Moland, C.L.; George, N.; Cao, Z.; Yu, L.-R.; Fuscoe, J.C.; Beger, R.D.; Desai, V.G. Early metabolomics changes in heart and plasma during chronic doxorubicin treatment in B6C3F1mice. J. Appl. Toxicol. 2016, 36, 1486–1495. [Google Scholar] [CrossRef]
- Tan, G.; Lou, Z.; Liao, W.; Zhu, Z.; Dong, X.; Zhang, W.; Li, W.; Chai, Y. Potential Biomarkers in Mouse Myocardium of Doxorubicin-Induced Cardiomyopathy: A Metabonomic Method and Its Application. PLOS ONE 2011, 6, e27683. [Google Scholar] [CrossRef]
- Andreadou, I.; Papaefthimiou, M.; Constantinou, M.; Sigala, F.; Skaltsounis, A.L.; Tsantili-Kakoulidou, A.; Iliodromitis, E.K.; Kremastinos, D.T.; Mikros, E. Metabolomic identification of novel biomarkers in doxorubicin cardiotoxicity and protective eggect of the natural antioxidant oleuropein. ΝΜR Biomed 2009, 22, 585–92. [Google Scholar]
- Andreadou, I.; Mikros, E.; Ioannidis, K.; Sigala, F.; Naka, K.; Kostidis, S.; Farmakis, D.; Tenta, R.; Kavantzas, N.; Bibli, S.-I.; et al. Oleuropein prevents doxorubicin-induced cardiomyopathy interfering with signaling molecules and cardiomyocyte metabolism. J. Mol. Cell. Cardiol. 2014, 69, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.; Cui, C.; Wang, C.; Lu, S.; Zhang, M.; Chen, D.; Jiang, P. Systematic Evaluations of Doxorubicin-Induced Toxicity in Rats Based on Metabolomics. ACS Omega 2020, 6, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Tantawy, M.; Chekka, L.M.; Huang, Y.; Garrett, T.J.; Singh, S.; Shah, C.P.; Cornell, R.F.; Baz, R.C.; Fradley, M.G.; Waheed, N.; et al. Lactate Dehydrogenase B and Pyruvate Oxidation Pathway Associated With Carfilzomib-Related Cardiotoxicity in Multiple Myeloma Patients: Result of a Multi-Omics Integrative Analysis. Front. Cardiovasc. Med. 2021, 8, 645122. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Xie, J.; Guo, X.; Ju, L.; Li, Y.; Zhang, Y.J. Chromatogr. B Anal. Plasma metabolic profiling analysis of cyclophosphamide-induced cardiotoxicity using metabolomics coupled with UPLC/Q-TOF-MS and ROC curve. Technol. Biomed. Life Sci. 2016, 1033, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.C.; Parry, T.L.; Huang, W.; Ilaiwy, A.; Bain, J.R.; Muehlbauer, M.J.; O'Neal, S.K.; Patterson, C.; Johnson, G.L.; Willis, M.S. Non-Targeted Metabolomics Analysis of the Effects of Tyrosine Kinase Inhibitors Sunitinib and Erlotinib on Heart, Muscle, Liver and Serum Metabolism In Vivo. Metabolites. 2017, 7, pii: E31. [Google Scholar] [CrossRef]
- Jensen, B.C.; Parry, T.L.; Huang, W.; Beak, J.Y.; Ilaiwy, A.; Bain, J.R.; Newgard, C.B.; Muehlbauer, M.J.; Patterson, C.; Johnson, G.L.; et al. Effects of the kinase inhibitor sorafenib on heart, muscle, liver, and plasma metabolism in vivo using non-targeted metabolomics analysis. Pharmacol. 2017, 174, 4797–4811. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, U.; Ellis, J.K.; Wagh, V.; Nemade, H.; Hescheler, J.; Keun, H.C.; Sachinidis, A. Metabolite signatures of doxorubicin induced toxicity in human induced pluripotent stem cell-derived cardiomyocytes. Amino Acids 2017, 49, 1955–1963. [Google Scholar] [CrossRef]
- Wang, X.; Sun, C.-L.; Quiñones-Lombraña, A.; Singh, P.; Landier, W.; Hageman, L.; Mather, M.; Rotter, J.I.; Taylor, K.D.; Chen, Y.-D.I.; et al. CELF4 Variant and Anthracycline-Related Cardiomyopathy: A Children’s Oncology Group Genome-Wide Association Study. J. Clin. Oncol. 2016, 34, 863–870. [Google Scholar] [CrossRef]
- Park, B.; Sim, S.H.; Lee, K.S.; Kim, H.J.; Park, I.H. Genome-wide association study of genetic variants related to anthracycline-induced cardiotoxicity in early breast cancer. Cancer Sci. 2020, 111, 2579–2587. [Google Scholar] [CrossRef]
- Rochette, L.; Guenancia, C.; Gudjoncik, A.; Hachet, O.; Zeller, M.; Cottin, Y.; Vergely, C. Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol. Sci. 2015, 36, 326–348. [Google Scholar] [CrossRef] [PubMed]
| Medicine/Cardiotoxicity | Incidence (%) | Arrhythmia | Myocardial ischemia | Vascular toxicity | Heart failure | QT prolongation | Arterial Hypertension |
|---|---|---|---|---|---|---|---|
| Anthracyclines | |||||||
| Doxorubicin | 3-26 | ××× | X | NE | Xxx | NE | X |
| Doxorubicin Liposomal |
2 | × | xx | NE | x | NE | X |
| Epirubicin | 0,9-3,3 | × | X | NE | X | NE | X |
| Daunorubicin | ×× | X | NE | X | NE | X | |
| Idarubicin | 5-18 | ××× | X | NE | xx | NE | X |
| Antibiotics | |||||||
| Mitoxantrone | 0,2-30 | ××× | xx | NE | Xx | NE | Xx |
| Mitomycin-c | 10 | Xx | xx | NE | Xx | NE | |
| Monoclonal antibody | |||||||
| Trastuzumab | 1,7-8 | Xx | X | Xx | Xxx | NE | Xx |
| Bevacizumab | 1,6-4 | Xx | xx | xxx | xx | NE | Xx |
| Pertuzumab | 0,7-1,2 | X | X | X | Xx | NE | x |
| dinutuximab beta | NE | xx | NE | Xx | NE | Xx | |
| Rituximab | X | xx | Xxx | X | NE | Xx | |
| Tyrosine kinase inhibitors | |||||||
| Dasatinib | 2-4 | xxx | xx | Xx | Xx | xx | Xx |
| Nilotinib | 1 | xx | NE | x | Xx | xx | Xxx |
| Vermurafenib | xx | xx | Xx | x | NE | Xx | |
| Sorafenib | 2-28 | X | xx | Xx | Xx | NE | xx |
| Sunitinib | 2,7-15 | X | xx | Xx | Xxx | x | Xxx |
| Erlotinib | 7-11 | NE | xx | Xx | NE | NE | NE |
| Lapatinib | 0,2-1,5 | NE | xx | X | NE | xxx | NE |
| Pazopanib | 7-11 | NE | xx | Xx | X | NE | Xxx |
| Imatinib | 0,2-2,7 | NE | xxx | Xx | Xx | NE | NE |
| Proteasome inhibitors | |||||||
| Bortezomib | 2-5 | X | X | X | X | NE | X |
| Carfilzomib | 11-25 | Xx | xx | NE | X | NE | X |
| Antimetabolite | |||||||
| 5-fluorouracil | 2-20 | xxx | xxx | NE | X | NE | NE |
| Capecitabine | xxx | xxx | Xx | NE | NE | NE | |
| Clofarabine | 27 | NE | |||||
| Alkylating agents | |||||||
| Cyclophosphamide | 7-28 | NE | NE | X | NE | NE | NE |
| Ifosfamide | 0,5-17 | NE | NE | X | Xx | NE | NE |
| Cisplatin | rare | NE | NE | Xx | NE | NE | NE |
| Antimicrotubule agent | |||||||
| Paclitaxel | <1 | xx | X | NE | X | NE | x |
| nab-paclitaxel | xx | NE | X | NE | NE | X | |
| Docetaxel | 2,3-13 | xx | xx | NE | X | NE | Xx |
| Alkaloids of vinca | |||||||
| Vincristine | 25 | xx | X | NE | NE | xx | X |
| Vinblastine | NE | X | NE | NE | NE | X | |
| Vindesin | NE | NE | NE | NE | NE | NE | |
| Vinorelbin | NE | X | NE | NE | NE | NE |
| Risk factors related in child | Risk factors related in therapy |
(Diabetes, obesity, hyperlipidemia,
Hypertension)
|
|
| MiRNA | Drug | Modulation | Species | System | References |
|---|---|---|---|---|---|
| miR-1 | doxorubicin | increase | female patients | plasma | Riguad et al, Oncotarget 2017 |
| miR-1, miR-29b, miR-499 |
anthracyclines | increase | children and young adult | plasma | Leger et al, J Am Heart Assoc. 2017 |
| miR1254 | bacacizumub | increase | Humans | plasma | Zhao et al, Tumour Biol. 2014 |
| miR29miR499 | doxorubicin | increase | Children | plasma | Oatmen et al, Am J Physiol Heart Circ Physiol, 2018 |
| miR208 | doxorubicin | nothing | female patients | plasma | Calvalho et al, J Appl Toxicol 2015 |
| Metabolite | Plasma | Stem cell | Heart | Mice | People | XRT | Medicine | Dose | Biomarker | References |
|---|---|---|---|---|---|---|---|---|---|---|
| proline | ↓//↑ | ↑ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | |||
| LPC 20:3 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| linoleic acid | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| l-carnitine | ↑//↑ | Yes | no | cyclophosphamide/doxo/isoprotenerol/5-fluorouracil | 200mg/kg//20mg/kg//5mg/kg//125mg/kg | Li et al, J Proteome Res, 2015 | ||||
| 19-hydroxycorticosterone | ↑//↓ | Yes | no | cyclophosphamide/doxo/isoprotenerol/5-fluorouracil | 200mg/kg//20mg/kg//5mg/kg//125mg/kg | Li et al, J Proteome Res, 2015 | ||||
| phytophingosine | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| cholid acid | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 14:0 | ↓//↓ | Yes | no | cyclophosphamide/doxo/isoprotenerol/5-fluorouracil | 200mg/kg//20mg/kg//5mg/kg//125mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 18:3 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 16:1 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPE 18:2 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 22:5 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 22:6 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 22:4 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 20:2 | ↓//↓ | Yes | no | cyclophosphamide/doxo/isoprotenerol/5-fluorouracil | 200mg/kg//20mg/kg//5mg/kg//125mg/kg | Li et al, J Proteome Res, 2015 | ||||
| PLE 20:3 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| pyruvate | ↑ | Doxorubicin | 20mg/kg | troponine TLDH | Andreadou et al, ΝΜR Biomed, 2009/Chauhari et al, Amino Acids 2017 | |||||
| acetate | ↑ | ↑ | Yes | doxorubicin | 20mg/kg | troponine TLDH | Andreadou et al, ΝΜR Biomed, 2009/Chauhari et al, Amino Acids 2017 | |||
| formate | ↑ | Doxorubicin | 20mg/kg | troponine TLDH | Andreadou et al, ΝΜR Biomed, 2009/Chauhari et al, Amino Acids 2017 | |||||
| succinate | ↑ | ↑ | Yes | Doxorubicin | 20mg/kg | troponine TLDH | Andreadou et al, ΝΜR Biomed, 2009/Chauhari et al, Amino Acids 2017 | |||
| lactate | ↑//↑ | ↓ | Yes | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | |||
| alanine | ↑//↑ | ↑//↑ | Yes | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | |||
| glutamine | ↑ | ↓ | Yes | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | |||
| glutamate | ↑ | no | Yes | ↑ | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | ||
| creatine | no | Yes | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | ||||
| taurine | no | Yes | ↓ | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | |||
| valine | ↑ | ↓ | Yes | ↑ | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | ||
| leuline | ↑ | ↓ | Yes | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | |||
| isoleukine | ↑ | ↓ | Yes | ↑ | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | ||
| carnitine | ↓//↑ | ↓ | Yes | yes | anthracyclines//doxorubicin | troponine T | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | |||
| threitol | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| mannose | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| pyroglutamine | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| n-acetylalanine | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| creatine | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| eicosenoate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| stearidonate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| arachidonate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| dihomo-linoleate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| l-stearoylglcerophoinositol | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| dehydroisoandrosterone sulfate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| pregnen-dio; disulfate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| pregn steroid monosulfate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| arginine | ↑ | ↑ | Yes | Doxorubicin | Schnackenberg et al, Appl. Toxicol. 2016 | |||||
| asparagine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| citrulline | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| glycine | ↑ | ↑ | Yes | ↑ | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | |||
| histidine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| lysine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| methionine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| ornithine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| phenylalanine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| serine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| threonine | ↑ | ↑ | Yes | ↑ | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | |||
| trptophan | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| tyrosine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| acetylornithine | ↑ | ↓ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| hydroxproline | ↑ | no | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| citrate | no | no | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| propionylcarnitine | ↑ | no | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| serotonine | no | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| putrescine | no | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| malate | ↑ | ↑ | Yes | Doxorubicin | Tan et al, PLoS One 2011 | |||||
| fructose | ↑ | Yes | Doxorubicin | Tan et al, PLoS One 2011 | ||||||
| glycose | ↑ | Yes | Doxorubicin | Tan et al, PLoS One 2011 | ||||||
| cholesterol | ↑ | Yes | Doxorubicin | Tan et al, PLoS One 2011 | ||||||
| alanine | ↑ | Yes | Doxorubicin | Tan et al, PLoS One 2011 | ||||||
| glutamine | Yes | ↓ | Doxorubicin | Tan et al, PLoS One 2011 | ||||||
| docosahexaenoic acid | ↓ | Yes | Sunitinib | Jencen et al, Metabolites. 2017 | ||||||
| arachidonic acid/eicosapetaenoic acid | ↓ | Yes | Sunitinib | Jencen et al, Metabolites. 2017 | ||||||
| 6-hydroxynicotinic acid | ↓ | Yes | Sunitinib | Jencen et al, Metabolites. 2017 | ||||||
| o-phosphocolamine | ↓ | Yes | Sunitinib | Jencen et al, Metabolites. 2017 | ||||||
| ethanolamine | ↑ | Yes | Sunitinib | Jencen et al, Metabolites. 2017 | ||||||
| xenobiotics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
