Submitted:
17 April 2023
Posted:
18 April 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. The Oncogenic Role of Mutant IDH in Tumour Formation and Progression
2.1. Metabolic Alterations
2.2. Redox Imbalance
2.3. Epigenetic Modifications
2.4. Tumour Microenvironment
2.4.1. IDH mutation and tumour-specific immune cells
2.4.2. IDH mutation, intra-tumour hypoxia and angiogenesis
2.4.3. IDH mutation and tumour-associated epilepsy
2.5. The role of IDH mutation in tumour invasion
2.6. The emerging role of IDH3 in cancer and beyond
3. Novel Therapeutic Options for IDH Mutant Glioma
3.1. Direct Inhibition of mutant IDH
| Drug Name | Target | Mechanism of Action | Advantages | Disadvantages | Current Clinical Trial in Gliomas (s) | Sponsor (s) |
| AG 120 Ivosidenib (F.D.A. Approved) |
IDH1 R132 C, H, G, S, L | Reversible, allosteric competitive inhibitor | F.D.A. approved in 2018 for relapse/refractory acute myeloid leukaemia and 2019 for newly diagnosed. In 2021, F.D.A received application for the drug to be assessed for cholangiocarcinoma. Currently, under investigation in a number of clinical trials in haematological malignancies. |
Unknown if it penetrates the BBB, 4.1% penetrance in rat model. | NCT02073994: Phase 1, multicentre, single group assignment, open-label, dose escalation/safety and clinical activity trial of oral administration for solid tumour including gliomas. 170 patients to be recruited by 2022. NCT03343197: A phase 1, radnomised, multicentre, controlled, open label, parallel assignment, perioperative study of AG120 and AG881in patients with non-enhancing IDH1 mutant glioma both grade II and III. 45 patients estimated. |
Agios/Celgene |
| AG 221 Enasidenib (F.D.A. Approved) |
IDH2 R140Q, R172K | Allosteric, non-competitive inhibitor | F.D.A. approved in 2017 for relapse/refractory acute myeloid. Currently, under investigation in a number of clinical trials in haematological malignancies. |
No information on penetrance through the BBB. | NCT02273739: A phase1/2 multicentre, open-label dose escalation trial for solid tumours including gliomas. Trial completed with 21 participants. | Agios/Celgene |
| AG 881 | Pan Inhibitor IDH1&2 | Allosteric non-competitive inhibitor | Penetrance of the BBB in rat model. Pan inhibitor with advanced clinical trial design showing good tolerability and safety profile. |
NCT02481154: Phase 1, multicentre, open label, single group assignment, dose escalation/safety and clinical activity trial of oral administration for gliomas with IDH1 or IDH2 mutation. The trial was completed in 2021. NCT04164901: phase 3 multicenter, randomized, double-blind, placebo-controlled study of AG-881 in subjects with residual or recurrent grade 2 glioma with an IDH1 or IDH2 mutation. Approximately 366 participants are planned to be randomised 1:1 to receive orally administered Vorasidenib 50 mg QD or placebo. Press release published March 2023. |
Agios/Celgene | |
| AGI 5198 | IDH1 R132 C,H |
Reversible, allosteric competitive inhibitor to alpha-KG | Penetrance of BBB in mouse glioma xenografts. | Agios/Celgene | ||
| BAY 1436032 | IDH1 R132 C,G,H,L,S | Allosteric non-competitive inhibitor | Penetrance (low): 0.06-0.38 brain to plasma ratio) of BBB in mouse model. | NCT02746081: A phase 1, open label, non-randomised, multicentre, of tolerance and pharmacodynamic evaluation in solid tumour with IDH1 mutation. 81 patients. | Bayer | |
| IDH 305 | IDH1 R132 C,H | Allosteric non-competitive inhibitor | Penetrance of BBB in murine models. | NCT02381886: A phase 1, single group assignment, open label for advanced malignancies that harbour IDHR132H mutations. 166 patients. 75-750 mg twice daily. Complete remission (CR) or CR with incomplete count recovery occurred in 10/37 (27%) patients with AML and 1/ 4 patients with myelodysplastic syndrome. Adverse events (AEs) suspected to be related to study drug were reported in 53.7% of patients. Results published March 2023. |
Novartis | |
| AGI 6780 | IDH2 R140Q | Allosteric non-competitive inhibitor | Unknown penetrance through the BBB. | Agios/Celgene | ||
| FT-2102 | IDH1 R132 C | Competitive inhibitor | Unknown penetrance through the BBB. | NCT03684811: A phase 1b/2 non-randomised, parallel assignment, open label study for recurrent/progressed glioma plus other tumours that have IDH1 mutation. 200 patients estimated. | Forma Hannover Medical School (Germany) | |
| MFK A | IDH1 R132 C, H | Unknown | Penetrance through BBB in mouse model shown with brain-to-plasma ratio >1. | Unknown penetrance through the BBB. | Merck | |
| GSK 321 | IDH1 R132 C, H, G | Reversible, allosteric, non-competitive inhibitor | Unknown penetrance through the BBB. | GSK | ||
| ML 309 | IDH1 R132 H | Reversible inhibitor | Unknown penetrance through the BBB. | |||
| Ds 1001b | IDH1 R132 X | Direct inhibitor | Shown to penetrate the BBB both in humans and mouse xenograft models. Designed to penetrate the BBB. | NCT03030066: A phase 1 single group assignment open label study. 47 participants. Twice-daily oral administration resulted in antitumor activity in patients with recurrent/progressive IDH1-mutated glioma. Results published in February 2023. |
Daichi Sankyo |
3.2. IDH Vaccine
3.3. Modulating Epigenetic Alterations in IDH mutant gliomas
3.4. Inhibiting DNA Repair
3.5. Inhibiting Metabolic Pathways
3.6. Modulating Redox Homeostasis
3.7. Differentiation therapy
4. Conclusion and Future Directions
References
- Koh, H.J., et al., Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem, 2004. 279(38): p. 39968-74. [CrossRef]
- Badur, M.G., et al., Oncogenic R132 IDH1 Mutations Limit NADPH for De Novo Lipogenesis through (D)2-Hydroxyglutarate Production in Fibrosarcoma Cells. Cell Rep, 2018. 25(6): p. 1680.
- Lee, S.H., et al., Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by gamma-rays. Int J Radiat Biol, 2004. 80(9): p. 635-42.
- Joseph, J.W., et al., The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion. J Biol Chem, 2006. 281(47): p. 35624-32.
- Leighton, F., et al., The synthesis and turnover of rat liver peroxisomes. I. Fractionation of peroxisome proteins. J Cell Biol, 1969. 41(2): p. 521-35.
- Yang, C., et al., Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res, 2009. 69(20): p. 7986-93.
- Xu, X., et al., Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem, 2004. 279(32): p. 33946-57. [CrossRef]
- Ma, T., et al., The β and γ subunits play distinct functional roles in the α(2)βγ heterotetramer of human NAD-dependent isocitrate dehydrogenase. Sci Rep, 2017. 7: p. 41882.
- Hurley, J.H., et al., Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry, 1991. 30(35): p. 8671-8.
- Gabriel, J.L., P.R. Zervos, and G.W. Plaut, Activity of purified NAD-specific isocitrate dehydrogenase at modulator and substrate concentrations approximating conditions in mitochondria. Metabolism, 1986. 35(7): p. 661-7.
- Yan, H., et al., IDH1 and IDH2 mutations in gliomas. N Engl J Med, 2009. 360(8): p. 765-73.
- Parsons, D.W., et al., An integrated genomic analysis of human glioblastoma multiforme. Science, 2008. 321(5897): p. 1807-12. [CrossRef]
- Hartmann, C., et al., Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathologica, 2009. 118(4): p. 469-474.
- Balss, J., et al., Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathologica, 2008. 116(6): p. 597-602. [CrossRef]
- Ichimura, K., et al., IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro-Oncology, 2009. 11(4): p. 341-347. [CrossRef]
- Watanabe, T., et al., IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol, 2009. 174(4): p. 1149-53. [CrossRef]
- Amary, M.F., et al., IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol, 2011. 224(3): p. 334-43. [CrossRef]
- Borger, D.R., et al., Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist, 2012. 17(1): p. 72-9.
- Paschka, P., et al., IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol, 2010. 28(22): p. 3636-43.
- Al-Khallaf, H., Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell Biosci, 2017. 7: p. 37. [CrossRef]
- Ward, P.S., et al., The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell, 2010. 17(3): p. 225-34. [CrossRef]
- Ward, P.S., et al., Identification of additional IDH mutations associated with oncometabolite R(-)-2-hydroxyglutarate production. Oncogene, 2012. 31(19): p. 2491-8. [CrossRef]
- Dang, L., et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2010. 465(7300): p. 966. [CrossRef]
- Dang, L., et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009. 462(7274): p. 739-44. [CrossRef]
- Pope, W.B., et al., Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol, 2012. 107(1): p. 197-205. [CrossRef]
- Xu, W., et al., Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011. 19(1): p. 17-30.
- Chowdhury, R., et al., The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep, 2011. 12(5): p. 463-9. [CrossRef]
- Abbas, S., et al., Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood, 2010. 116(12): p. 2122-6. [CrossRef]
- Figueroa, M.E., et al., Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell, 2010. 18(6): p. 553-67. [CrossRef]
- Wang, H.Y., et al., The comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomas. J Exp Clin Cancer Res, 2016. 35: p. 86.
- Tesileanu, C.M.S., et al., Non-IDH1-R132H IDH1/2 mutations are associated with increased DNA methylation and improved survival in astrocytomas, compared to IDH1-R132H mutations. Acta Neuropathol, 2021. 141(6): p. 945-957.
- Pusch, S., et al., D-2-Hydroxyglutarate producing neo-enzymatic activity inversely correlates with frequency of the type of isocitrate dehydrogenase 1 mutations found in glioma. Acta Neuropathol Commun, 2014. 2: p. 19. [CrossRef]
- Avellaneda Matteo, D., et al., Molecular mechanisms of isocitrate dehydrogenase 1 (IDH1) mutations identified in tumors: The role of size and hydrophobicity at residue 132 on catalytic efficiency. J Biol Chem, 2017. 292(19): p. 7971-7983. [CrossRef]
- Xu, W., et al., Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011. 19(1): p. 17-30.
- Reitman, Z.J., et al., Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci U S A, 2011. 108(8): p. 3270-5. [CrossRef]
- Borodovsky, A., M.J. Seltzer, and G.J. Riggins, Altered cancer cell metabolism in gliomas with mutant IDH1 or IDH2. Curr Opin Oncol, 2012. 24(1): p. 83-9. [CrossRef]
- Ohka, F., et al., Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation. Tumour Biol, 2014. 35(6): p. 5911-20.
- Maus, A. and G.J. Peters, Glutamate and α-ketoglutarate: key players in glioma metabolism. Amino Acids, 2017. 49(1): p. 21-32. [CrossRef]
- Waitkus, M.S., et al., Adaptive Evolution of the GDH2 Allosteric Domain Promotes Gliomagenesis by Resolving IDH1(R132H)-Induced Metabolic Liabilities. Cancer Res, 2018. 78(1): p. 36-50. [CrossRef]
- Seltzer, M.J., et al., Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res, 2010. 70(22): p. 8981-7.
- Doherty, J.R. and J.L. Cleveland, Targeting lactate metabolism for cancer therapeutics. J Clin Invest, 2013. 123(9): p. 3685-92. [CrossRef]
- Le, A., et al., Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A, 2010. 107(5): p. 2037-42. [CrossRef]
- Khurshed, M., et al., In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma. Oncotarget, 2017. 8(30): p. 49165-49177. [CrossRef]
- Chesnelong, C., et al., Lactate dehydrogenase A silencing in IDH mutant gliomas. Neuro Oncol, 2014. 16(5): p. 686-95. [CrossRef]
- Chaumeil, M.M., et al., Hyperpolarized (13)C MR imaging detects no lactate production in mutant IDH1 gliomas: Implications for diagnosis and response monitoring. Neuroimage Clin, 2016. 12: p. 180-9. [CrossRef]
- Hvinden, I.C., et al., Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Reports Medicine, 2021. 2(12): p. 100469. [CrossRef]
- Losman, J.A. and W.G. Kaelin, Jr., What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev, 2013. 27(8): p. 836-52.
- Itsumi, M., et al., Idh1 protects murine hepatocytes from endotoxin-induced oxidative stress by regulating the intracellular NADP(+)/NADPH ratio. Cell Death Differ, 2015. 22(11): p. 1837-45.
- Liu, Y., et al., Targeting IDH1-Mutated Malignancies with NRF2 Blockade. J Natl Cancer Inst, 2019. 111(10): p. 1033-1041. [CrossRef]
- Behrend, L., G. Henderson, and R.M. Zwacka, Reactive oxygen species in oncogenic transformation. Biochem Soc Trans, 2003. 31(Pt 6): p. 1441-4. [CrossRef]
- Gilbert, M.R., et al., Autophagy and oxidative stress in gliomas with IDH1 mutations. Acta Neuropathol, 2014. 127(2): p. 221-33. [CrossRef]
- Shi, J., et al., Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumour Biol, 2015. 36(2): p. 655-62. [CrossRef]
- Mohrenz, I.V., et al., Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death. Apoptosis, 2013. 18(11): p. 1416-1425.
- Cai, S.J., et al., Brusatol, an NRF2 inhibitor for future cancer therapeutic. Cell Biosci, 2019. 9: p. 45. [CrossRef]
- Grønbaek, K., C. Hother, and P.A. Jones, Epigenetic changes in cancer. Apmis, 2007. 115(10): p. 1039-59. [CrossRef]
- Kimura, H., Histone modifications for human epigenome analysis. J Hum Genet, 2013. 58(7): p. 439-45. [CrossRef]
- Unruh, D., et al., Methylation and transcription patterns are distinct in IDH mutant gliomas compared to other IDH mutant cancers. Sci Rep, 2019. 9(1): p. 8946. [CrossRef]
- Noushmehr, H., et al., Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell, 2010. 17(5): p. 510-22. [CrossRef]
- Christensen, B.C., et al., DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma. J Natl Cancer Inst, 2011. 103(2): p. 143-53.
- Malta, T.M., et al., Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro Oncol, 2018. 20(5): p. 608-620. [CrossRef]
- Tsukada, Y.-i., et al., Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006. 439(7078): p. 811-816. [CrossRef]
- Kohli, R.M. and Y. Zhang, TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 2013. 502(7472): p. 472-9. [CrossRef]
- Carrillo, J.A., et al., Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma. AJNR Am J Neuroradiol, 2012. 33(7): p. 1349-55. [CrossRef]
- Duncan, C.G., et al., A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res, 2012. 22(12): p. 2339-55.
- Turcan, S., et al., Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nat Genet, 2018. 50(1): p. 62-72. [CrossRef]
- Doi, A., et al., Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet, 2009. 41(12): p. 1350-3.
- Linninger, A., et al., Modeling the diffusion of D-2-hydroxyglutarate from IDH1 mutant gliomas in the central nervous system. Neuro Oncol, 2018. 20(9): p. 1197-1206. [CrossRef]
- Kalluri, A.L., P.P. Shah, and M. Lim, The Tumor Immune Microenvironment in Primary CNS Neoplasms: A Review of Current Knowledge and Therapeutic Approaches. Int J Mol Sci, 2023. 24(3). [CrossRef]
- Amankulor, N.M., et al., Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev, 2017. 31(8): p. 774-786. [CrossRef]
- Kohanbash, G., et al., Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J Clin Invest, 2017. 127(4): p. 1425-1437. [CrossRef]
- Zhang, X., et al., IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro Oncol, 2016. 18(10): p. 1402-12. [CrossRef]
- Tang, F., et al., Advances in the Immunotherapeutic Potential of Isocitrate Dehydrogenase Mutations in Glioma. Neuroscience Bulletin, 2022. 38(9): p. 1069-1084. [CrossRef]
- Poon, C.C., et al., Differential microglia and macrophage profiles in human IDH-mutant and -wild type glioblastoma. Oncotarget, 2019. 10(33): p. 3129-3143.
- Friedrich, M., et al., Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nat Cancer, 2021. 2(7): p. 723-740. [CrossRef]
- Ma, D., et al., Mutant IDH1 promotes phagocytic function of microglia/macrophages in gliomas by downregulating ICAM1. Cancer Lett, 2021. 517: p. 35-45. [CrossRef]
- Zhang, L., et al., D-2-Hydroxyglutarate Is an Intercellular Mediator in IDH-Mutant Gliomas Inhibiting Complement and T Cells. Clin Cancer Res, 2018. 24(21): p. 5381-5391.
- Mortazavi, A., et al., IDH-mutated gliomas promote epileptogenesis through d-2-hydroxyglutarate-dependent mTOR hyperactivation. Neuro Oncol, 2022. 24(9): p. 1423-1435. [CrossRef]
- Notarangelo, G., et al., Oncometabolite d-2HG alters T cell metabolism to impair CD8(+) T cell function. Science, 2022. 377(6614): p. 1519-1529. [CrossRef]
- Zhao, S., et al., Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science, 2009. 324(5924): p. 261-5. [CrossRef]
- Hirata, M., et al., Mutant IDH is sufficient to initiate enchondromatosis in mice. Proc Natl Acad Sci U S A, 2015. 112(9): p. 2829-34. [CrossRef]
- Metellus, P., et al., IDH mutation status impact on in vivo hypoxia biomarkers expression: new insights from a clinical, nuclear imaging and immunohistochemical study in 33 glioma patients. J Neurooncol, 2011. 105(3): p. 591-600. [CrossRef]
- Williams, S.C., et al., R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1α upregulation in adult glioma. Acta Neuropathol, 2011. 121(2): p. 279-81. [CrossRef]
- Bardella, C., et al., Expression of Idh1(R132H) in the Murine Subventricular Zone Stem Cell Niche Recapitulates Features of Early Gliomagenesis. Cancer Cell, 2016. 30(4): p. 578-594. [CrossRef]
- Koivunen, P., et al., Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature, 2012. 483(7390): p. 484-8. [CrossRef]
- Polívka, J., Jr., et al., IDH1 mutation is associated with lower expression of VEGF but not microvessel formation in glioblastoma multiforme. Oncotarget, 2018. 9(23): p. 16462-16476. [CrossRef]
- Kickingereder, P., et al., IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep, 2015. 5: p. 16238. [CrossRef]
- Yalaza, C., et al., R132H Mutation in IDH1 Gene is Associated with Increased Tumor HIF1-Alpha and Serum VEGF Levels in Primary Glioblastoma Multiforme. Ann Clin Lab Sci, 2017. 47(3): p. 362-364.
- Liubinas, S.V., et al., IDH1 mutation is associated with seizures and protoplasmic subtype in patients with low-grade gliomas. Epilepsia, 2014. 55(9): p. 1438-43. [CrossRef]
- Chen, H., et al., Mutant IDH1 and seizures in patients with glioma. Neurology, 2017. 88(19): p. 1805-1813. [CrossRef]
- Correia, C.E., et al., Pharmacoresistant seizures and IDH mutation in low-grade gliomas. Neurooncol Adv, 2021. 3(1): p. vdab146. [CrossRef]
- Chen, X., et al., Structures of a constitutively active mutant of human IDH3 reveal new insights into the mechanisms of allosteric activation and the catalytic reaction. J Biol Chem, 2022. 298(12): p. 102695.
- Kölker, S., et al., NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in d-2-hydroxyglutaric aciduria. Eur J Neurosci, 2002. 16(1): p. 21-8.
- Armstrong, T.S., et al., Epilepsy in glioma patients: mechanisms, management, and impact of anticonvulsant therapy. Neuro Oncol, 2016. 18(6): p. 779-89. [CrossRef]
- Lange, F., J. Hörnschemeyer, and T. Kirschstein, Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy. Cells, 2021. 10(5).
- Andronesi, O.C., et al., Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med, 2012. 4(116): p. 116ra4.
- Herman, M.A., B. Nahir, and C.E. Jahr, Distribution of extracellular glutamate in the neuropil of hippocampus. PLoS One, 2011. 6(11): p. e26501. [CrossRef]
- Baldock, A.L., et al., Invasion and proliferation kinetics in enhancing gliomas predict IDH1 mutation status. Neuro Oncol, 2014. 16(6): p. 779-86. [CrossRef]
- Molenaar, R.J., et al., The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim Biophys Acta, 2014. 1846(2): p. 326-41.
- van Lith, S.A., et al., Tumor cells in search for glutamate: an alternative explanation for increased invasiveness of IDH1 mutant gliomas. Neuro Oncol, 2014. 16(12): p. 1669-70.
- Colvin, H., et al., Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer. Sci Rep, 2016. 6: p. 36289. [CrossRef]
- Lu, J., et al., IDH1 mutation promotes proliferation and migration of glioma cells via EMT induction. J buon, 2019. 24(6): p. 2458-2464.
- Cui, D., et al., R132H mutation in IDH1 gene reduces proliferation, cell survival and invasion of human glioma by downregulating Wnt/β-catenin signaling. Int J Biochem Cell Biol, 2016. 73: p. 72-81.
- Ramachandran, N. and R.F. Colman, Chemical characterization of distinct subunits of pig heart DPN-specific isocitrate dehydrogenase. J Biol Chem, 1980. 255(18): p. 8859-64. [CrossRef]
- Barnes, L.D., G.D. Kuehn, and D.E. Atkinson, Yeast diphosphopyridine nucleotide specific isocitrate dehydrogenase. Purification and some properties. Biochemistry, 1971. 10(21): p. 3939-44.
- McDonough, M.A., et al., Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol, 2010. 20(6): p. 659-72. [CrossRef]
- Nagaraj, R., et al., Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell, 2017. 168(1-2): p. 210-223.e11. [CrossRef]
- Li, W., et al., Nuclear localization of mitochondrial TCA cycle enzymes modulates pluripotency via histone acetylation. Nat Commun, 2022. 13(1): p. 7414.
- Liu, X., et al., The existence of a nonclassical TCA cycle in the nucleus that wires the metabolic-epigenetic circuitry. Signal Transduct Target Ther, 2021. 6(1): p. 375.
- Hartong, D.T., et al., Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat Genet, 2008. 40(10): p. 1230-4. [CrossRef]
- Pierrache, L.H.M., et al., Whole-Exome Sequencing Identifies Biallelic IDH3A Variants as a Cause of Retinitis Pigmentosa Accompanied by Pseudocoloboma. Ophthalmology, 2017. 124(7): p. 992-1003. [CrossRef]
- Peter, V.G., et al., A novel missense variant in IDH3A causes autosomal recessive retinitis pigmentosa. Ophthalmic Genet, 2019. 40(2): p. 177-181. [CrossRef]
- Spiegel, R., et al., Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. Am J Hum Genet, 2012. 90(3): p. 518-23. [CrossRef]
- Aptowitzer, I., et al., Liver disease in the Ashkenazi-Jewish lipoamide dehydrogenase deficiency. J Pediatr Gastroenterol Nutr, 1997. 24(5): p. 599-601. [CrossRef]
- Elpeleg, O.N., et al., Lipoamide dehydrogenase deficiency: a new cause for recurrent myoglobinuria. Muscle Nerve, 1997. 20(2): p. 238-40.
- Shany, E., et al., Lipoamide dehydrogenase deficiency due to a novel mutation in the interface domain. Biochem Biophys Res Commun, 1999. 262(1): p. 163-6. [CrossRef]
- Rosenberg, M.J., et al., Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nat Genet, 2002. 32(1): p. 175-9. [CrossRef]
- Spiegel, R., et al., SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol, 2009. 66(3): p. 419-24. [CrossRef]
- Alston, C.L., et al., Recessive germline SDHA and SDHB mutations causing leukodystrophy and isolated mitochondrial complex II deficiency. J Med Genet, 2012. 49(9): p. 569-77.
- Jackson, C.B., et al., Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency. J Med Genet, 2014. 51(3): p. 170-5.
- Gellera, C., et al., Fumarase deficiency is an autosomal recessive encephalopathy affecting both the mitochondrial and the cytosolic enzymes. Neurology, 1990. 40(3 Pt 1): p. 495-9. [CrossRef]
- Fattal-Valevski, A., et al., Homozygous mutation, p.Pro304His, in IDH3A, encoding isocitrate dehydrogenase subunit is associated with severe encephalopathy in infancy. Neurogenetics, 2017. 18(1): p. 57-61. [CrossRef]
- Krell, D., et al., Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS One, 2011. 6(5): p. e19868. [CrossRef]
- Zeng, L., et al., Aberrant IDH3α expression promotes malignant tumor growth by inducing HIF-1-mediated metabolic reprogramming and angiogenesis. Oncogene, 2015. 34(36): p. 4758-66. [CrossRef]
- May, J.L., et al., IDH3α regulates one-carbon metabolism in glioblastoma. Sci Adv, 2019. 5(1): p. eaat0456. [CrossRef]
- Zhang, D., et al., Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep, 2015. 10(8): p. 1335-48. [CrossRef]
- Liu, X., et al., Isocitrate dehydrogenase 3A, a rate-limiting enzyme of the TCA cycle, promotes hepatocellular carcinoma migration and invasion through regulation of MTA1, a core component of the NuRD complex. Am J Cancer Res, 2020. 10(10): p. 3212-3229.
- Rohle, D., et al., An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science, 2013. 340(6132): p. 626-30. [CrossRef]
- Popovici-Muller, J., et al., Discovery of the First Potent Inhibitors of Mutant IDH1 That Lower Tumor 2-HG in Vivo. ACS Med Chem Lett, 2012. 3(10): p. 850-5. [CrossRef]
- Johannessen, T.A., et al., Rapid Conversion of Mutant IDH1 from Driver to Passenger in a Model of Human Gliomagenesis. Mol Cancer Res, 2016. 14(10): p. 976-983. [CrossRef]
- Tateishi, K., et al., Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. Cancer Cell, 2015. 28(6): p. 773-784. [CrossRef]
- Popovici-Muller, J., et al., Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers. ACS Med Chem Lett, 2018. 9(4): p. 300-305. [CrossRef]
- DiNardo, C.D., et al., Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N Engl J Med, 2018. 378(25): p. 2386-2398. [CrossRef]
- Mellinghoff, I.K., et al., Phase 1 study of AG-881, an inhibitor of mutant IDH1/IDH2, in patients with advanced IDH-mutant solid tumors, including glioma. Journal of Clinical Oncology, 2018. 36(15_suppl): p. 2002-2002. [CrossRef]
- Yen, K., et al., AG-221, a First-in-Class Therapy Targeting Acute Myeloid Leukemia Harboring Oncogenic IDH2 Mutations. Cancer Discov, 2017. 7(5): p. 478-493. [CrossRef]
- Marcucci, G., et al., IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol, 2010. 28(14): p. 2348-55.
- Wang, F., et al., Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science, 2013. 340(6132): p. 622-6. [CrossRef]
- Yang, B., et al., Molecular mechanisms of "off-on switch" of activities of human IDH1 by tumor-associated mutation R132H. Cell Res, 2010. 20(11): p. 1188-200.
- Stein, E.M., Enasidenib, a targeted inhibitor of mutant IDH2 proteins for treatment of relapsed or refractory acute myeloid leukemia. Future Oncol, 2018. 14(1): p. 23-40. [CrossRef]
- Dhillon, S., Ivosidenib: First Global Approval. Drugs, 2018. 78(14): p. 1509-1516. [CrossRef]
- Deng, G., et al., Selective inhibition of mutant isocitrate dehydrogenase 1 (IDH1) via disruption of a metal binding network by an allosteric small molecule. J Biol Chem, 2015. 290(2): p. 762-74. [CrossRef]
- Bello, L., et al., Angiogenesis and invasion in gliomas. Cancer Treat Res, 2004. 117: p. 263-84.
- Heredia, V., et al., AG-120, a novel IDH1 targeted molecule, inhibits invasion and migration of chondrosarcoma cells in vitro. Annals of Oncology, 2017. 28: p. v538. [CrossRef]
- Nicolay, B., et al., EXTH-59. THE IDH1 MUTANT INHIBITOR AG-120 SHOWS STRONG INHIBITION OF 2-HG PRODUCTION IN AN ORTHOTOPIC IDH1 MUTANT GLIOMA MODEL IN VIVO. Neuro-Oncology, 2017. 19(suppl_6): p. vi86-vi86. [CrossRef]
- Yen, K., et al., Abstract 4956: Functional characterization of the ivosidenib (AG-120) and azacitidine combination in a mutant IDH1 AML cell model. Cancer Research, 2018. 78(13_Supplement): p. 4956-4956.
- Burris, H., et al., Abstract PL04-05: The first reported results of AG-120, a first-in-class, potent inhibitor of the IDH1 mutant protein, in a Phase I study of patients with advanced IDH1-mutant solid tumors, including gliomas. Molecular Cancer Therapeutics, 2015. 14(12_Supplement_2): p. PL04-05-PL04-05. [CrossRef]
- Fan, B., et al., Clinical pharmacokinetics and pharmacodynamics of ivosidenib, an oral, targeted inhibitor of mutant IDH1, in patients with advanced solid tumors. Invest New Drugs, 2020. 38(2): p. 433-444. [CrossRef]
- Mellinghoff, I.K., et al., PL3.1 A phase 1, open-label, perioperative study of ivosidenib (AG-120) and vorasidenib (AG-881) in recurrent, IDH1-mutant, low-grade glioma: results from cohort 1. Neuro Oncol., 2019. 21(Suppl 3): p. iii2. doi: 10.1093/neuonc/noz126.004. Epub 2019 Sep 6. [CrossRef]
- Chen, J., J. Yang, and P. Cao, The Evolving Landscape in the Development of Isocitrate Dehydrogenase Mutant Inhibitors. Mini Rev Med Chem, 2016. 16(16): p. 1344-1358. [CrossRef]
- Ma, R. and C.H. Yun, Crystal structures of pan-IDH inhibitor AG-881 in complex with mutant human IDH1 and IDH2. Biochem Biophys Res Commun, 2018. 503(4): p. 2912-2917. [CrossRef]
- Yen, K., et al., Abstract B126: AG-881, a brain penetrant, potent, pan-mutant IDH (mIDH) inhibitor for use in mIDH solid and hematologic malignancies. Molecular Cancer Therapeutics, 2018. 17(1_Supplement): p. B126-B126. [CrossRef]
- Konteatis, Z., et al., Vorasidenib (AG-881): A First-in-Class, Brain-Penetrant Dual Inhibitor of Mutant IDH1 and 2 for Treatment of Glioma. ACS Med Chem Lett, 2020. 11(2): p. 101-107. [CrossRef]
- Mellinghoff, I., et al., Actr-31. Phase 1 Study of Ag-881, an Inhibitor of Mutant Idh1 and Idh2: Results from the Recurrent/Progressive Glioma Population. Neuro Oncol., 2018. 20(Suppl 6): p. vi18. doi: 10.1093/neuonc/noy148.064. Epub 2018 Nov 5. [CrossRef]
- Mellinghoff, I.K., et al., Vorasidenib, a Dual Inhibitor of Mutant IDH1/2, in Recurrent or Progressive Glioma; Results of a First-in-Human Phase I Trial. Clin Cancer Res, 2021. 27(16): p. 4491-4499. [CrossRef]
- Mellinghoff, I.K., et al., INDIGO: A global, randomized, double-blind, phase III study of vorasidenib (VOR; AG-881) vs placebo in patients (pts) with residual or recurrent grade II glioma with an isocitrate dehydrogenase 1/2 (IDH1/2) mutation. Journal of Clinical Oncology, 2020. 38(15_suppl): p. TPS2574-TPS2574.
- Pusch, S., et al., Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo. Acta Neuropathol, 2017. 133(4): p. 629-644. [CrossRef]
- Golub, D., et al., Mutant Isocitrate Dehydrogenase Inhibitors as Targeted Cancer Therapeutics. Front Oncol, 2019. 9: p. 417. [CrossRef]
- Heuser, M., et al., Safety and efficacy of BAY1436032 in IDH1-mutant AML: phase I study results. Leukemia, 2020. 34(11): p. 2903-2913. [CrossRef]
- Kopinja, J., et al., A Brain Penetrant Mutant IDH1 Inhibitor Provides In Vivo Survival Benefit. Sci Rep, 2017. 7(1): p. 13853. [CrossRef]
- Cho, Y.S., et al., Discovery and Evaluation of Clinical Candidate IDH305, a Brain Penetrant Mutant IDH1 Inhibitor. ACS Med Chem Lett, 2017. 8(10): p. 1116-1121. [CrossRef]
- DiNardo, C.D., et al., A phase 1 study of IDH305 in patients with IDH1(R132)-mutant acute myeloid leukemia or myelodysplastic syndrome. J Cancer Res Clin Oncol, 2023. 149(3): p. 1145-1158. [CrossRef]
- Natsume, A., et al., The first-in-human phase I study of a brain-penetrant mutant IDH1 inhibitor DS-1001 in patients with recurrent or progressive IDH1-mutant gliomas. Neuro Oncol, 2023. 25(2): p. 326-336. [CrossRef]
- Sulkowski, P.L., et al., 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med, 2017. 9(375).
- Molenaar, R.J., et al., Radioprotection of IDH1-Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198. Cancer Res, 2015. 75(22): p. 4790-802.
- Watts, C., et al., Protocol for the Tessa Jowell BRAIN MATRIX Platform Study. BMJ Open, 2022. 12(9): p. e067123. [CrossRef]
- Lai, A., et al., Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol, 2011. 29(34): p. 4482-90. [CrossRef]
- Johnson, B.E., et al., Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science, 2014. 343(6167): p. 189-193. [CrossRef]
- Bai, H., et al., Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nat Genet, 2016. 48(1): p. 59-66. [CrossRef]
- Schumacher, T., et al., A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 2014. 512(7514): p. 324-7. [CrossRef]
- Platten, M., et al., A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature, 2021. 592(7854): p. 463-468. [CrossRef]
- Wahner, H.C.W., et al., Predicting survival in anaplastic astrocytoma patients in a single-center cohort of 108 patients. Radiat Oncol, 2020. 15(1): p. 282. [CrossRef]
- Christians, A., et al., The prognostic role of IDH mutations in homogeneously treated patients with anaplastic astrocytomas and glioblastomas. Acta Neuropathol Commun, 2019. 7(1): p. 156. [CrossRef]
- Huang, J., et al., Isocitrate Dehydrogenase Mutations in Glioma: From Basic Discovery to Therapeutics Development. Front Oncol, 2019. 9: p. 506.
- Waitkus, M.S., B.H. Diplas, and H. Yan, Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell, 2018. 34(2): p. 186-195. [CrossRef]
- Tsukada, Y., et al., Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006. 439(7078): p. 811-6. [CrossRef]
- Flavahan, W.A., et al., Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature, 2016. 529(7584): p. 110-114. [CrossRef]
- Lokker, N.A., et al., Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res, 2002. 62(13): p. 3729-35.
- Turcan, S., et al., Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine. Oncotarget, 2013. 4(10): p. 1729-36. [CrossRef]
- Borodovsky, A., et al., 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget, 2013. 4(10): p. 1737-47. [CrossRef]
- Rastogi, R.P., et al., Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids, 2010. 2010: p. 592980. [CrossRef]
- Chatterjee, N. and G.C. Walker, Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen, 2017. 58(5): p. 235-263.
- Wang, P., et al., Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents. Cell Rep, 2015. 13(11): p. 2353-2361. [CrossRef]
- Chen, F., et al., Oncometabolites d- and l-2-Hydroxyglutarate Inhibit the AlkB Family DNA Repair Enzymes under Physiological Conditions. Chem Res Toxicol, 2017. 30(4): p. 1102-1110.
- Morales, J., et al., Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr, 2014. 24(1): p. 15-28.
- Tateishi, K., et al., The Alkylating Chemotherapeutic Temozolomide Induces Metabolic Stress in IDH1-Mutant Cancers and Potentiates NAD(+) Depletion-Mediated Cytotoxicity. Cancer Res, 2017. 77(15): p. 4102-4115. [CrossRef]
- Gupta, S.K., et al., Delineation of MGMT Hypermethylation as a Biomarker for Veliparib-Mediated Temozolomide-Sensitizing Therapy of Glioblastoma. J Natl Cancer Inst, 2016. 108(5).
- Okamoto, K. and H. Seimiya, Revisiting Telomere Shortening in Cancer. Cells, 2019. 8(2). [CrossRef]
- Mukherjee, J., et al., Mutant IDH1 Cooperates with ATRX Loss to Drive the Alternative Lengthening of Telomere Phenotype in Glioma. Cancer Res, 2018. 78(11): p. 2966-2977.
- Zhang, J.M. and L. Zou, Alternative lengthening of telomeres: from molecular mechanisms to therapeutic outlooks. Cell Biosci, 2020. 10: p. 30. [CrossRef]
- Garten, A., et al., Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol, 2015. 11(9): p. 535-46. [CrossRef]
- Madala, H.R., et al., Beyond Brooding on Oncometabolic Havoc in IDH-Mutant Gliomas and AML: Current and Future Therapeutic Strategies. Cancers (Basel), 2018. 10(2). [CrossRef]
- Emadi, A., et al., Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Exp Hematol, 2014. 42(4): p. 247-51. [CrossRef]
- Elhammali, A., et al., A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov, 2014. 4(7): p. 828-39.
- Matre, P., et al., Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget, 2016. 7(48): p. 79722-79735.
- Kizilbash, S.H., et al., A phase Ib trial of CB-839 (telaglenastat) in combination with radiation therapy and temozolomide in patients with IDH-mutated diffuse astrocytoma and anaplastic astrocytoma (NCT03528642). Journal of Clinical Oncology, 2019. 37(15_suppl): p. TPS2075-TPS2075.
- Garrett, M., et al., Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities. Cancer Metab, 2018. 6: p. 4.
- Andronesi, O.C., et al., Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nat Commun, 2018. 9(1): p. 1474. [CrossRef]
- McBrayer, S.K., et al., Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell, 2018. 175(1): p. 101-116.e25.
- Lu, C., et al., IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 2012. 483(7390): p. 474-8. [CrossRef]
- Sasaki, M., et al., IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature, 2012. 488(7413): p. 656-9. [CrossRef]
- Saha, S.K., et al., Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature, 2014. 513(7516): p. 110-4. [CrossRef]
- Hansen, E., et al., AG-120, an Oral, Selective, First-in-Class, Potent Inhibitor of Mutant IDH1, Reduces Intracellular 2HG and Induces Cellular Differentiation in TF-1 R132H Cells and Primary Human IDH1 Mutant AML Patient Samples Treated Ex Vivo. Blood, 2014. 124(21): p. 3734-3734.
- Norsworthy, K.J., et al., FDA Approval Summary: Ivosidenib for Relapsed or Refractory Acute Myeloid Leukemia with an Isocitrate Dehydrogenase-1 Mutation. Clin Cancer Res, 2019. 25(11): p. 3205-3209.
- Polychronidou, G., et al., Novel therapeutic approaches in chondrosarcoma. Future Oncol, 2017. 13(7): p. 637-648. [CrossRef]
- Zeidner, J.F., Differentiating the Differentiation Syndrome Associated with IDH Inhibitors in AML. Clin Cancer Res, 2020. 26(16): p. 4174-4176. [CrossRef]
- Reyhanoglu, G., et al., Differentiation Syndrome, a Side Effect From the Therapy of Acute Promyelocytic Leukemia. Cureus, 2020. 12(12): p. e12042.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
