Submitted:
23 March 2023
Posted:
23 March 2023
You are already at the latest version
Abstract
Keywords:
1. Holo-Omics are the New Trend in Coral Studies
2. The Promise of Meta-Omics in Unraveling the Coral Holobiont Complexities
3. Meta-Transcriptomics: A Powerful Tool for Studying Coral Holobiont Functionality
4. Understanding Coral Holobiont through Metabolomic and Proteomics
5. Conclusions
References
- Falcinelli, S.; Picchietti, S.; Rodiles, A.; Cossignani, L.; Merrifield, D.L.; Taddei, A.R.; Maradonna, F.; Olivotto, I.; Gioacchini, G.; Carnevali, O. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism. Sci Rep 2015, 5, 9336. [Google Scholar] [CrossRef]
- Wu, H.-J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 2012, 3, 4–14. [Google Scholar] [CrossRef]
- Rudman, S.M.; Greenblum, S.; Hughes, R.C.; Rajpurohit, S.; Kiratli, O.; Lowder, D.B.; Lemmon, S.G.; Petrov, D.A.; Chaston, J.M.; Schmidt, P. Microbiome composition shapes rapid genomic adaptation of Drosophila melanogaster. Proceedings of the National Academy of Sciences 2019, 116, 20025–20032. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-Gut Microbiota Metabolic Interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wu, X.; Jin, F. Gut-Brain Psychology: Rethinking Psychology From the Microbiota–Gut–Brain Axis. Front Integr Neurosci 2018, 12. [Google Scholar] [CrossRef]
- Nyholm, L.; Koziol, A.; Marcos, S.; Botnen, A.B.; Aizpurua, O.; Gopalakrishnan, S.; Limborg, M.T.; Gilbert, M.T.P.; Alberdi, A. Holo-Omics: Integrated Host-Microbiota Multi-omics for Basic and Applied Biological Research. iScience 2020, 23, 101414. [Google Scholar] [CrossRef] [PubMed]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; Vere, N.; et al. Environmental <scp>DNA</scp> metabarcoding: Transforming how we survey animal and plant communities. Mol Ecol 2017, 26, 5872–5895. [Google Scholar] [CrossRef]
- Seymour, M. Environmental DNA Advancing Our Understanding and Conservation of Inland Waters. In Encyclopedia of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2022; pp. 685–698. [Google Scholar] [CrossRef]
- de Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares, R.; Lara, E.; Berney, C.; Le Bescot, N.; Probert, I.; et al. Eukaryotic plankton diversity in the sunlit ocean. Science 2015, 348. [Google Scholar] [CrossRef]
- Decelle, J.; Carradec, Q.; Pochon, X.; Henry, N.; Romac, S.; Mahé, F.; Dunthorn, M.; Kourlaiev, A.; Voolstra, C.R.; Wincker, P.; et al. Worldwide Occurrence and Activity of the Reef-Building Coral Symbiont Symbiodinium in the Open Ocean. Current Biology 2018, 28, 3625–3633. [Google Scholar] [CrossRef]
- Sunagawa, S.; Karsenti, E.; Bowler, C.; Bork, P. Computational eco-systems biology in <scp>T</scp> ara <scp>O</scp> ceans: translating data into knowledge. Mol Syst Biol 2015, 11, 809. [Google Scholar] [CrossRef]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems 2016, 1. [Google Scholar] [CrossRef] [PubMed]
- Hume, B.C.C.; Ziegler, M.; Poulain, J.; Pochon, X.; Romac, S.; Boissin, E.; de Vargas, C.; Planes, S.; Wincker, P.; Voolstra, C.R. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ 2018, 6, e4816. [Google Scholar] [CrossRef] [PubMed]
- Arif, C.; Daniels, C.; Bayer, T.; Banguera-Hinestroza, E.; Barbrook, A.; Howe, C.J.; LaJeunesse, T.C.; Voolstra, C.R. Assessing <scp>S</scp> ymbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 <scp>rDNA</scp> region. Mol Ecol 2014, 23, 4418–4433. [Google Scholar] [CrossRef] [PubMed]
- Hume, B.C.C.; Smith, E.G.; Ziegler, M.; Warrington, H.J.M.; Burt, J.A.; LaJeunesse, T.C.; Wiedenmann, J.; Voolstra, C.R. SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour 2019, 19, 1063–1080. [Google Scholar] [CrossRef] [PubMed]
- Leray, M.; Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proceedings of the National Academy of Sciences 2015, 112, 2076–2081. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 2019, 10, 5029. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Chen, T.; Pei, Y.; Guo, H.; Li, Z.; Yang, Y.; Zhang, F.; Yu, J.; Li, X.; Yang, Y.; et al. Characterization of Shallow Whole-Metagenome Shotgun Sequencing as a High-Accuracy and Low-Cost Method by Complicated Mock Microbiomes. Front Microbiol 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Salazar, G.; Ruscheweyh, H.-J.; Hildebrand, F.; Acinas, S.G.; Sunagawa, S. mTAGs: taxonomic profiling using degenerate consensus reference sequences of ribosomal RNA genes. Bioinformatics 2021, 38, 270–272. [Google Scholar] [CrossRef] [PubMed]
- Vaulot, D.; Sim, C.W.H.; Ong, D.; Teo, B.; Biwer, C.; Jamy, M.; Lopes dos Santos, A. <scp> metaPR 2 </scp> : A database of eukaryotic <scp>18S rRNA</scp> metabarcodes with an emphasis on protists. Mol Ecol Resour 2022, 22, 3188–3201. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Guillou, L.; Bachar, D.; Audic, S.; Bass, D.; Berney, C.; Bittner, L.; Boutte, C.; Burgaud, G.; de Vargas, C.; Decelle, J.; et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res 2012, 41, D597–D604. [Google Scholar] [CrossRef]
- Obiol, A.; Giner, C.R.; Sánchez, P.; Duarte, C.M.; Acinas, S.G.; Massana, R. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol Ecol Resour 2020, 20, 718–731. [Google Scholar] [CrossRef] [PubMed]
- Bashir, Y.; Pradeep Singh, S.; Kumar Konwar, B. Metagenomics: An Application Based Perspective. Chinese Journal of Biology 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Matsuo, Y.; Komiya, S.; Yasumizu, Y.; Yasuoka, Y.; Mizushima, K.; Takagi, T.; Kryukov, K.; Fukuda, A.; Morimoto, Y.; Naito, Y.; et al. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinIONTM nanopore sequencing confers species-level resolution. BMC Microbiol 2021, 21, 35. [Google Scholar] [CrossRef]
- Jaspers, C.; Fraune, S.; Arnold, A.E.; Miller, D.J.; Bosch, T.C.G.; Voolstra, C.R. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 2019, 133, 81–87. [Google Scholar] [CrossRef]
- D Ainsworth, T.; Krause, L.; Bridge, T.; Torda, G.; Raina, J.-B.; Zakrzewski, M.; Gates, R.D.; Padilla-Gamiño, J.L.; Spalding, H.L.; Smith, C.; et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J 2015, 9, 2261–2274. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Seneca, F.O.; Yum, L.K.; Palumbi, S.R.; Voolstra, C.R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun 2017, 8, 14213. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Agreda, A.; Leggat, W.; Bongaerts, P.; Herrera, C.; Ainsworth, T.D. Rethinking the Coral Microbiome: Simplicity Exists within a Diverse Microbial Biosphere. mBio 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Röthig, T.; Ochsenkühn, M.A.; Roik, A.; van der Merwe, R.; Voolstra, C.R. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Mol Ecol 2016, 25, 1308–1323. [Google Scholar] [CrossRef]
- Sun, S.; Jones, R.B.; Fodor, A.A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 2020, 8, 46. [Google Scholar] [CrossRef]
- Bonacolta, A.M.; Weiler, B.A.; Porta-Fitó, T.; Sweet, M.; Keeling, P.; del Campo, J. Beyond the Symbiodiniaceae: diversity and role of microeukaryotic coral symbionts. Coral Reefs. 2023. [Google Scholar] [CrossRef]
- TABERLET, P.; COISSAC, E.; HAJIBABAEI, M.; RIESEBERG, L.H. Environmental DNA. Mol Ecol 2012, 21, 1789–1793. [Google Scholar] [CrossRef]
- Keeling, P.J.; Campo, J. del Marine Protists Are Not Just Big Bacteria. Current Biology 2017, 27, R541–R549. [Google Scholar] [CrossRef]
- Rose, N.H.; Bay, R.A.; Morikawa, M.K.; Palumbi, S.R. Polygenic evolution drives species divergence and climate adaptation in corals. Evolution (N Y) 2018, 72, 82–94. [Google Scholar] [CrossRef]
- Cleves, P.A.; Shumaker, A.; Lee, J.; Putnam, H.M.; Bhattacharya, D. Unknown to Known: Advancing Knowledge of Coral Gene Function. Trends in Genetics 2020, 36, 93–104. [Google Scholar] [CrossRef]
- Stephens, T.G.; Ragan, M.A.; Bhattacharya, D.; Chan, C.X. Core genes in diverse dinoflagellate lineages include a wealth of conserved dark genes with unknown functions. Sci Rep 2018, 8, 17175. [Google Scholar] [CrossRef]
- Tan, S.; Liu, H. Unravel the hidden protistan diversity: application of blocking primers to suppress PCR amplification of metazoan DNA. Appl Microbiol Biotechnol 2018, 102, 389–401. [Google Scholar] [CrossRef]
- West, P.T.; Probst, A.J.; Grigoriev, I.v.; Thomas, B.C.; Banfield, J.F. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res 2018, 28, 569–580. [Google Scholar] [CrossRef]
- Moran, M.A. Metatranscriptomics: Eavesdropping on Complex Microbial Communities. Microbe Magazine 2009, 4, 329–335. [Google Scholar] [CrossRef]
- Cziesielski, M.J.; Schmidt-Roach, S.; Aranda, M. The past, present, and future of coral heat stress studies. Ecol Evol 2019, 9, 10055–10066. [Google Scholar] [CrossRef]
- Hrdlickova, R.; Toloue, M.; Tian, B. <scp>RNA</scp> -Seq methods for transcriptome analysis. WIREs RNA 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Voolstra, C.R.; Valenzuela, J.J.; Turkarslan, S.; Cárdenas, A.; Hume, B.C.C.; Perna, G.; Buitrago-López, C.; Rowe, K.; Orellana, M.V.; Baliga, N.S.; et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol Ecol 2021, 30, 4466–4480. [Google Scholar] [CrossRef] [PubMed]
- Savary, R.; Barshis, D.J.; Voolstra, C.R.; Cárdenas, A.; Evensen, N.R.; Banc-Prandi, G.; Fine, M.; Meibom, A. Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. Proceedings of the National Academy of Sciences 2021, 118. [Google Scholar] [CrossRef] [PubMed]
- Yum, L.K.; Baumgarten, S.; Röthig, T.; Roder, C.; Roik, A.; Michell, C.; Voolstra, C.R. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals. Sci Rep 2017, 7, 6442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Q.; Xie, J.Y.; Yeung, Y.H.; Xiao, B.; Liao, B.; Xu, J.; Qiu, J.-W. Development of a transcriptomic database for 14 species of scleractinian corals. BMC Genomics 2019, 20, 387. [Google Scholar] [CrossRef] [PubMed]
- Planes, S.; Allemand, D.; Agostini, S.; Banaigs, B.; Boissin, E.; Boss, E.; Bourdin, G.; Bowler, C.; Douville, E.; Flores, J.M.; et al. The Tara Pacific expedition—A pan-ecosystemic approach of the “-omics” complexity of coral reef holobionts across the Pacific Ocean. PLoS Biol 2019, 17, e3000483. [Google Scholar] [CrossRef] [PubMed]
- Carradec, Q.; Pelletier, E.; Da Silva, C.; Alberti, A.; Seeleuthner, Y.; Blanc-Mathieu, R.; Lima-Mendez, G.; Rocha, F.; Tirichine, L.; Labadie, K.; et al. A global ocean atlas of eukaryotic genes. Nat Commun 2018, 9, 373. [Google Scholar] [CrossRef]
- Alberti, A.; Poulain, J.; Engelen, S.; Labadie, K.; Romac, S.; Ferrera, I.; Albini, G.; Aury, J.-M.; Belser, C.; Bertrand, A.; et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci Data 2017, 4, 170093. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.R.; Andrade, N.; Moya, A.; Chan, C.X.; Negri, A.P.; Bourne, D.G.; Ying, H.; Ball, E.E.; Miller, D.J. Dual RNA-sequencing analyses of a coral and its native symbiont during the establishment of symbiosis. Mol Ecol 2020, 29, 3921–3937. [Google Scholar] [CrossRef]
- Yuyama, I.; Ishikawa, M.; Nozawa, M.; Yoshida, M.; Ikeo, K. Transcriptomic changes with increasing algal symbiont reveal the detailed process underlying establishment of coral-algal symbiosis. Sci Rep 2018, 8, 16802. [Google Scholar] [CrossRef]
- Mohamed, A.R.; Cumbo, V.; Harii, S.; Shinzato, C.; Chan, C.X.; Ragan, M.A.; Bourne, D.G.; Willis, B.L.; Ball, E.E.; Satoh, N.; et al. The transcriptomic response of the coral Acropora digitifera to a competent Symbiodinium strain: the symbiosome as an arrested early phagosome. Mol Ecol 2016, 25, 3127–3141. [Google Scholar] [CrossRef]
- Pinzón, J.H.; Kamel, B.; Burge, C.A.; Harvell, C.D.; Medina, M.; Weil, E.; Mydlarz, L.D. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R Soc Open Sci 2015, 2, 140214. [Google Scholar] [CrossRef]
- Rose, N.H.; Seneca, F.O.; Palumbi, S.R. Gene Networks in the Wild: Identifying Transcriptional Modules that Mediate Coral Resistance to Experimental Heat Stress. Genome Biol Evol 2016, 8, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Seneca, F.O.; Palumbi, S.R. The role of transcriptome resilience in resistance of corals to bleaching. Mol Ecol 2015, 24, 1467–1484. [Google Scholar] [CrossRef] [PubMed]
- Frazier, M.; Helmkampf, M.; Bellinger, M.R.; Geib, S.M.; Takabayashi, M. De novo metatranscriptome assembly and coral gene expression profile of Montipora capitata with growth anomaly. BMC Genomics 2017, 18, 710. [Google Scholar] [CrossRef]
- Anderson, D.A.; Walz, M.E.; Weil, E.; Tonellato, P.; Smith, M.C. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity. PeerJ 2016, 4, e1616. [Google Scholar] [CrossRef]
- Wright, R.M.; Aglyamova, G.V.; Meyer, E.; Matz, M.V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 2015, 16, 371. [Google Scholar] [CrossRef]
- Libro, S.; Kaluziak, S.T.; Vollmer, S.V. RNA-seq Profiles of Immune Related Genes in the Staghorn Coral Acropora cervicornis Infected with White Band Disease. PLoS One 2013, 8, e81821. [Google Scholar] [CrossRef]
- Barshis, D.J.; Ladner, J.T.; Oliver, T.A.; Seneca, F.O.; Traylor-Knowles, N.; Palumbi, S.R. Genomic basis for coral resilience to climate change. Proceedings of the National Academy of Sciences 2013, 110, 1387–1392. [Google Scholar] [CrossRef]
- Peano, C.; Pietrelli, A.; Consolandi, C.; Rossi, E.; Petiti, L.; Tagliabue, L.; De Bellis, G.; Landini, P. An efficient rRNA removal method for RNA sequencing in GC-rich bacteria. Microb Inform Exp 2013, 3, 1. [Google Scholar] [CrossRef]
- Aguiar-Pulido, V.; Huang, W.; Suarez-Ulloa, V.; Cickovski, T.; Mathee, K.; Narasimhan, G. Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis. Evolutionary Bioinformatics, 3643. [Google Scholar] [CrossRef]
- Pérez-Losada, M.; Castro-Nallar, E.; Bendall, M.L.; Freishtat, R.J.; Crandall, K.A. Dual Transcriptomic Profiling of Host and Microbiota during Health and Disease in Pediatric Asthma. PLoS One 2015, 10, e0131819. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol 2002, 48, 155–71. [Google Scholar] [CrossRef]
- Bernini, P.; Bertini, I.; Luchinat, C.; Nepi, S.; Saccenti, E.; Schäfer, H.; Schütz, B.; Spraul, M.; Tenori, L. Individual Human Phenotypes in Metabolic Space and Time. J Proteome Res 2009, 8, 4264–4271. [Google Scholar] [CrossRef]
- Krumsiek, J.; Mittelstrass, K.; Do, K.T.; Stückler, F.; Ried, J.; Adamski, J.; Peters, A.; Illig, T.; Kronenberg, F.; Friedrich, N.; et al. Gender-specific pathway differences in the human serum metabolome. Metabolomics 2015, 11, 1815–1833. [Google Scholar] [CrossRef]
- Mastrangelo, A.; Armitage, E.; García, A.; Barbas, C. Metabolomics as a Tool for Drug Discovery and Personalised Medicine. A Review. Curr Top Med Chem 2015, 14, 2627–2636. [Google Scholar] [CrossRef]
- Quinn, R.A.; Vermeij, M.J.A.; Hartmann, A.C.; Galtier d’Auriac, I.; Benler, S.; Haas, A.; Quistad, S.D.; Lim, Y.W.; Little, M.; Sandin, S.; et al. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proceedings of the Royal Society B: Biological Sciences 2016, 283, 20160469. [Google Scholar] [CrossRef]
- Deutsch, J.M.; Jaiyesimi, O.A.; Pitts, K.A.; Houk, J.; Ushijima, B.; Walker, B.K.; Paul, V.J.; Garg, N. Metabolomics of Healthy and Stony Coral Tissue Loss Disease Affected Montastraea cavernosa Corals. Front Mar Sci 2021, 8. [Google Scholar] [CrossRef]
- Roach, T.N.F.; Little, M.; Arts, M.G.I.; Huckeba, J.; Haas, A.F.; George, E.E.; Quinn, R.A.; Cobián-Güemes, A.G.; Naliboff, D.S.; Silveira, C.B.; et al. A multiomic analysis of in situ coral–turf algal interactions. Proceedings of the National Academy of Sciences 2020, 117, 13588–13595. [Google Scholar] [CrossRef]
- Williams, A.; Chiles, E.N.; Conetta, D.; Pathmanathan, J.S.; Cleves, P.A.; Putnam, H.M.; Su, X.; Bhattacharya, D. Metabolomic shifts associated with heat stress in coral holobionts. Sci Adv 2021, 7. [Google Scholar] [CrossRef]
- Ochsenkühn, M.A.; Schmitt-Kopplin, P.; Harir, M.; Amin, S.A. Coral metabolite gradients affect microbial community structures and act as a disease cue. Commun Biol 2018, 1, 184. [Google Scholar] [CrossRef]
- Vilela, C.L.S.; Villela, H.D.M.; Duarte, G.A.S.; Santoro, E.P.; Rachid, C.T.C.C.; Peixoto, R.S. Estrogen induces shift in abundances of specific groups of the coral microbiome. Sci Rep 2021, 11, 2767. [Google Scholar] [CrossRef] [PubMed]
- Stien, D.; Suzuki, M.; Rodrigues, A.M.S.; Yvin, M.; Clergeaud, F.; Thorel, E.; Lebaron, P. A unique approach to monitor stress in coral exposed to emerging pollutants. Sci Rep 2020, 10, 9601. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.R.; Ochsenkühn, M.A.; Kazlak, A.; Moustafa, A.; Amin, S.A. The coral microbiome: Towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev. 1093. [Google Scholar]
- Lu, Y.; Jiang, J.; Zhao, H.; Han, X.; Xiang, Y.; Zhou, W. Clade-Specific Sterol Metabolites in Dinoflagellate Endosymbionts Are Associated with Coral Bleaching in Response to Environmental Cues. mSystems 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Vohsen, S.A.; Fisher, C.R.; Baums, I.B. Metabolomic richness and fingerprints of deep-sea coral species and populations. Metabolomics 2019, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Andersson, E.R.; Day, R.D.; Loewenstein, J.M.; Woodley, C.M.; Schock, T.B. Evaluation of Sample Preparation Methods for the Analysis of Reef-Building Corals Using 1H-NMR-Based Metabolomics. Metabolites 2019, 9. [Google Scholar] [CrossRef]
- Jorissen, H.; Galand, P.E.; Bonnard, I.; Meiling, S.; Raviglione, D.; Meistertzheim, A.-L.; Hédouin, L.; Banaigs, B.; Payri, C.E.; Nugues, M.M. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Sci Rep 2021, 11, 14610. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).