Article
Version 15
Preserved in Portico This version is not peer-reviewed
A Solution of The Collatz Conjecture Problem
Version 1
: Received: 30 January 2023 / Approved: 30 January 2023 / Online: 30 January 2023 (06:21:02 CET)
Version 2 : Received: 11 February 2023 / Approved: 13 February 2023 / Online: 13 February 2023 (02:53:06 CET)
Version 3 : Received: 4 March 2023 / Approved: 6 March 2023 / Online: 6 March 2023 (04:14:16 CET)
Version 4 : Received: 11 March 2023 / Approved: 13 March 2023 / Online: 13 March 2023 (03:05:38 CET)
Version 5 : Received: 28 March 2023 / Approved: 28 March 2023 / Online: 28 March 2023 (05:32:08 CEST)
Version 6 : Received: 3 April 2023 / Approved: 3 April 2023 / Online: 3 April 2023 (07:22:34 CEST)
Version 7 : Received: 10 April 2023 / Approved: 11 April 2023 / Online: 11 April 2023 (03:28:27 CEST)
Version 8 : Received: 22 June 2023 / Approved: 25 June 2023 / Online: 25 June 2023 (04:40:44 CEST)
Version 9 : Received: 20 July 2023 / Approved: 21 July 2023 / Online: 21 July 2023 (08:53:32 CEST)
Version 10 : Received: 10 August 2023 / Approved: 10 August 2023 / Online: 11 August 2023 (03:01:11 CEST)
Version 11 : Received: 19 September 2023 / Approved: 20 September 2023 / Online: 21 September 2023 (03:25:23 CEST)
Version 12 : Received: 14 October 2023 / Approved: 17 October 2023 / Online: 17 October 2023 (07:08:50 CEST)
Version 13 : Received: 28 October 2023 / Approved: 30 October 2023 / Online: 30 October 2023 (09:47:16 CET)
Version 14 : Received: 19 November 2023 / Approved: 21 November 2023 / Online: 21 November 2023 (10:43:13 CET)
Version 15 : Received: 9 April 2024 / Approved: 9 April 2024 / Online: 10 April 2024 (09:37:50 CEST)
Version 16 : Received: 20 April 2024 / Approved: 22 April 2024 / Online: 23 April 2024 (09:43:39 CEST)
Version 17 : Received: 2 October 2024 / Approved: 2 October 2024 / Online: 2 October 2024 (14:50:39 CEST)
Version 2 : Received: 11 February 2023 / Approved: 13 February 2023 / Online: 13 February 2023 (02:53:06 CET)
Version 3 : Received: 4 March 2023 / Approved: 6 March 2023 / Online: 6 March 2023 (04:14:16 CET)
Version 4 : Received: 11 March 2023 / Approved: 13 March 2023 / Online: 13 March 2023 (03:05:38 CET)
Version 5 : Received: 28 March 2023 / Approved: 28 March 2023 / Online: 28 March 2023 (05:32:08 CEST)
Version 6 : Received: 3 April 2023 / Approved: 3 April 2023 / Online: 3 April 2023 (07:22:34 CEST)
Version 7 : Received: 10 April 2023 / Approved: 11 April 2023 / Online: 11 April 2023 (03:28:27 CEST)
Version 8 : Received: 22 June 2023 / Approved: 25 June 2023 / Online: 25 June 2023 (04:40:44 CEST)
Version 9 : Received: 20 July 2023 / Approved: 21 July 2023 / Online: 21 July 2023 (08:53:32 CEST)
Version 10 : Received: 10 August 2023 / Approved: 10 August 2023 / Online: 11 August 2023 (03:01:11 CEST)
Version 11 : Received: 19 September 2023 / Approved: 20 September 2023 / Online: 21 September 2023 (03:25:23 CEST)
Version 12 : Received: 14 October 2023 / Approved: 17 October 2023 / Online: 17 October 2023 (07:08:50 CEST)
Version 13 : Received: 28 October 2023 / Approved: 30 October 2023 / Online: 30 October 2023 (09:47:16 CET)
Version 14 : Received: 19 November 2023 / Approved: 21 November 2023 / Online: 21 November 2023 (10:43:13 CET)
Version 15 : Received: 9 April 2024 / Approved: 9 April 2024 / Online: 10 April 2024 (09:37:50 CEST)
Version 16 : Received: 20 April 2024 / Approved: 22 April 2024 / Online: 23 April 2024 (09:43:39 CEST)
Version 17 : Received: 2 October 2024 / Approved: 2 October 2024 / Online: 2 October 2024 (14:50:39 CEST)
How to cite: Duan, B. A Solution of The Collatz Conjecture Problem. Preprints 2023, 2023010541. https://doi.org/10.20944/preprints202301.0541.v15 Duan, B. A Solution of The Collatz Conjecture Problem. Preprints 2023, 2023010541. https://doi.org/10.20944/preprints202301.0541.v15
Abstract
Research Collatz odd sequence, change (*3+1)/2^k operation in Collatz Conjecture to (*3+2^m-1)/2^k operation. Build a (*3+2^m-1)/2^k odd tree and a transform position model, prove if (*3+2^m-1)/2^k odd sequence can not converge after infinite steps of (*3+2^m-1)/2^k operation, the sequence must walk out of boundary of the tree.
Keywords
Collatz conjecture; (*3+1)/2^k odd sequence; (*3+2^m-1)/2^k odd sequence; (*3+2^m-1)/2^k odd tree.
Subject
Computer Science and Mathematics, Signal Processing
Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Comments (1)
We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.
Leave a public commentSend a private comment to the author(s)
* All users must log in before leaving a comment
Commenter:
Commenter's Conflict of Interests: I am one of the author