Preprint Article Version 5 Preserved in Portico This version is not peer-reviewed

A Solution of The Collatz Conjecture Problem

Version 1 : Received: 30 January 2023 / Approved: 30 January 2023 / Online: 30 January 2023 (06:21:02 CET)
Version 2 : Received: 11 February 2023 / Approved: 13 February 2023 / Online: 13 February 2023 (02:53:06 CET)
Version 3 : Received: 4 March 2023 / Approved: 6 March 2023 / Online: 6 March 2023 (04:14:16 CET)
Version 4 : Received: 11 March 2023 / Approved: 13 March 2023 / Online: 13 March 2023 (03:05:38 CET)
Version 5 : Received: 28 March 2023 / Approved: 28 March 2023 / Online: 28 March 2023 (05:32:08 CEST)
Version 6 : Received: 3 April 2023 / Approved: 3 April 2023 / Online: 3 April 2023 (07:22:34 CEST)
Version 7 : Received: 10 April 2023 / Approved: 11 April 2023 / Online: 11 April 2023 (03:28:27 CEST)
Version 8 : Received: 22 June 2023 / Approved: 25 June 2023 / Online: 25 June 2023 (04:40:44 CEST)
Version 9 : Received: 20 July 2023 / Approved: 21 July 2023 / Online: 21 July 2023 (08:53:32 CEST)
Version 10 : Received: 10 August 2023 / Approved: 10 August 2023 / Online: 11 August 2023 (03:01:11 CEST)
Version 11 : Received: 19 September 2023 / Approved: 20 September 2023 / Online: 21 September 2023 (03:25:23 CEST)
Version 12 : Received: 14 October 2023 / Approved: 17 October 2023 / Online: 17 October 2023 (07:08:50 CEST)
Version 13 : Received: 28 October 2023 / Approved: 30 October 2023 / Online: 30 October 2023 (09:47:16 CET)
Version 14 : Received: 19 November 2023 / Approved: 21 November 2023 / Online: 21 November 2023 (10:43:13 CET)
Version 15 : Received: 9 April 2024 / Approved: 9 April 2024 / Online: 10 April 2024 (09:37:50 CEST)
Version 16 : Received: 20 April 2024 / Approved: 22 April 2024 / Online: 23 April 2024 (09:43:39 CEST)

How to cite: duan, B. A Solution of The Collatz Conjecture Problem. Preprints 2023, 2023010541. https://doi.org/10.20944/preprints202301.0541.v5 duan, B. A Solution of The Collatz Conjecture Problem. Preprints 2023, 2023010541. https://doi.org/10.20944/preprints202301.0541.v5

Abstract

Build a special identical equation, use its calculation characters to prove and search for solution of any odd converging to 1 equation through (*3+1)/2^k operation, change the operation to (*3+2^m-1)/2^k, and get a solution for this equation, which is exactly same with that got from calculating directly. Then give a specific example to verify. Thus prove the Collatz Conjecture is true. Furthermore, analysis the sequences produced by iteration calculation during the procedure of searching for solution, build a weight function model, prove it decrease progressively to 0, build a complement weight function model, prove it increase to its convergence state. Build a (*3+2^m-1)/2^k odd tree, prove if odd in (*3+2^m-1)/2^k long huge odd sequence can not converge, the sequence must outstep the boundary of the tree after infinite steps of (*3+2^m-1)/2^k operation.

Keywords

collatz conjecture; (*3+1)/2k odd sequence; (*3+2m-1)/2k odd sequence; (*3+2m-1)/2k odd tree; weight function 

Subject

Computer Science and Mathematics, Signal Processing

Comments (2)

Comment 1
Received: 28 March 2023
Commenter: baoyuan duan
Commenter's Conflict of Interests: Author
Comment: improve the proof in section VI.
+ Respond to this comment
Comment 2
Received: 29 March 2023
Commenter:
The commenter has declared there is no conflict of interests.
Comment: sorry, there is a pen error in the title of pdf file
+ Respond to this comment

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 2
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.