Submitted:
01 March 2023
Posted:
06 March 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. The Bipartite Structure Of Psychology As The Root For Quantum-Classical Models Of Brain
2.1. General Semantics
2.2. Pauli and Jung’s Synchronicity
2.3. The Bi-Logical Structure of Psychology
3. Electromagnetic Fields In The Brain
4. Penrose and Hameroff’s Orch OR
5. The Dissipative Quantum Model of Brain
6. The Quantum-Classical Model of Brain
6.1. Temperature Quantum-Classical Dynamics
7. CONCLUSIONS
References
- von Bartheld, C.S.; Bahney, J.; and Herculano-Houzel, S. The Search for True Numbers of Neurons and Glial Cells in the Human Brain: A Review of 150 Years of Cell Counting. Journal of Comparative Neurology 2016, 524, 3865. [Google Scholar] [CrossRef]
- McIlwain, H.; Bachelard, H. S. Biochemistry and the Central Nervous System, Churchill Livingstone: Edinburgh, Scotland, 1985.
- McFadden, J. Integrating information in the brain’s EM field: the cemi field theory of consciousness. Neuroscience of Consciousness 2020, 6, niaa016. [Google Scholar] [CrossRef]
- McFadden, J. Synchronous Firing and Its Influence on the Brain’s Electromagnetic Field. Journal of Consciousness Studies 2002, 9, 23. [Google Scholar]
- McFadden, J. The CEMI Field Theory: Closing the loop. Journal of Consciousness Studies 2013, 20, 153. [Google Scholar]
- Hales, C. G.; Pockett, S. The relationship between local field potentials (LFPs) and the electromagnetic fields that give rise to them. Frontiers in Neuroscience 2014, 8, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Pockett, S.; Brennan, B. J.; Bold, G. E. J.; Holmes, M. D. A possible physiological basis for the discontinuity of consciousness. Frontiers in Psychology 2011, 2, 377. [Google Scholar] [CrossRef] [PubMed]
- Pockett, S.; Holmes, M. D. Intracranial EEG power spectra and phase synchrony during consciousness and unconsciousness. Consciousness and Cognition 2009, 18, 1049. [Google Scholar] [CrossRef]
- Liboff, A. R. Magnetic correlates in electromagnetic consciousness. Electromagnetic Biology and Medicine 2016, 35, 228. [Google Scholar] [CrossRef]
- Liboff, A. R. A human source for ELF magnetic perturbations. Electromagnetic Biology and Medicine 2016, 35, 337. [Google Scholar] [CrossRef]
- Fröhlich, F.; McCormick, D. A. Endogenous Electric Fields May Guide Neocortical Network Activity. Neuron 2010, 67, 129. [Google Scholar] [CrossRef]
- Penrose, R. On Gravity’s Role in Quantum State Reduction. General Relativity and Gravitation 1996, 8, 581. [Google Scholar] [CrossRef]
- Penrose, R. On the Gravitization of Quantum Mechanics 1: Quantum State Reduction. Found. Phys. 2014, 44, 557. [Google Scholar] [CrossRef]
- Penrose, R. On the Gravitization of Quantum Mechanics 2: Conformal Cyclic Cosmology. Found. Phys. 2014, 44, 873. [Google Scholar] [CrossRef]
- Penrose, R. The Emperor’s New Mind, Oxford University Press: Oxford, UK, 1989.
- Penrose, R. Shadows of the Mind, Oxford University Press: Oxford, UK, 1994.
- Hameroff, S.; Penrose, R. Consciousness events as orchestrated space-time selections. Journal of Consciousness Studies 1996, 2, 36. [Google Scholar]
- Hameroff, S.; Penrose, R. Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Mathematics and Computers in Simulation 1996, 40, 453. [Google Scholar] [CrossRef]
- Hameroff, S.; Penrose, R. Consciousness in the universe. A review of the `Orch OR’ theory. Physics of Life Reviews 2014, 11, 39. [Google Scholar] [CrossRef]
- Hameroff, S.; Nip, A.; Porter, M.; Tuszynski, J. Conduction pathways in microtubules, biological quantum computation, and consciousness. Biosystems 2002, 64, 149. [Google Scholar] [CrossRef] [PubMed]
- Craddock, T. J. A.; Hameroff, S. R.; Ayoub, A. T.; Klobukowski, M.; Tuszynski, J. A. Anestetics Act in Quantum Channels in Brain Microtubules to Prevent Consciousness. Current Topics in Medicinal Chemistry 2015, 15, 523. [Google Scholar] [CrossRef]
- Fisher, M. P. A. Quantum cognition: The possibility of processing with nuclear spins in the brain. Annals of Physics 2015, 362, 593. [Google Scholar] [CrossRef]
- Weingarten, C. P.; Doraiswamy, P. M.; Fisher, M. P. A. A new spin on neural processing: Quantum cognition. Frontiers in Human Neuroscience 2016, 10, 541. [Google Scholar] [CrossRef]
- Ettenberg, A.; Ayala, K.; Krug, J. T.; Collins, L.; Mayes, M. S.; Fisher, M. P. A. Differential effects of lithium isotopes in a ketamine-induced hyperactivity model of mania. Journal of Pharmacology, Biochemistry and Behavior 2020, 190, 172875. [Google Scholar] [CrossRef] [PubMed]
- Kerskens, C. M.; Pérez, D. L. Experimental indications of non-classical brain functions. J. Phys. Communications 2022, 6. [Google Scholar] [CrossRef]
- Hameroff, S. R. The Brain is Both Neurocomputer and Quantum Computer. Cognitive Science 2007, 31, 1035. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, G. Dissipation and memory capacity in the quantum brain model. International Journal of Modern Physics B 1995, 9, 973. [Google Scholar] [CrossRef]
- Pessa, E.; Vitiello, G. Quantum dissipation and Neural Net Dynamics. Bioelectrochemistry and Bioenergetics 1999, 48, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Alfinito, E.; Vitiello, G. The dissipative quantum model of brain: how does memory localize in correlated neuronal domain. Information Sciences 2000, 128, 217–229. [Google Scholar] [CrossRef]
- Freeman, W. J.; Vitiello, G. The Dissipative Quantum Model of Brain and Laboratory Observations. In Physics of Emergence and Organization; World Scientific: Singapore, 2008; pp. 232–251. [Google Scholar]
- Freeman, W. J.; Vitiello, G. Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Physics of Life Reviews 2006, 3, 93. [Google Scholar] [CrossRef]
- Freeman, W. J.; Vitiello, G. Dissipative neurodynamics in perception forms cortical patterns that are stabilized by vortices. J. Phys.: Conference Series 2009, 174, 012011. [Google Scholar] [CrossRef]
- Vitiello, G. Fractals as macroscopic manifestation of squeezed coherent states and brain dynamics. J. Phys.: Conference Series 2012, 380, 012021. [Google Scholar] [CrossRef]
- Vitiello, G. The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning. Current Opinion in Neurobiology 2014, 31, 7. [Google Scholar] [CrossRef]
- Sabbadini, S. A.; Vitiello, G. Entanglement and Phase-Mediated Correlations in Quantum Field Theory. Application to Brain-Mind States. Applied Sciences 2019, 9, 3203. [Google Scholar] [CrossRef]
- Korzybski, A. Science and Sanity. An Introduction to Non-Aristotelian Systems and General Semantics, Institute of General Semantics: Fort Worth, US, 2005.
- Kodish, S. B.; Kodish, B. I. Drive Yourself Sane. Using the Uncommon Sense of General Semantics Extensional Publishing: Pasadena, US, 2011.
- Korzybski, A. Alfred Korzybski: Collected Writings 1920-1950, Institute of General Semantics: Englewood, US, 1990.
- Christopher, P. They’re Stealing Our General Semantics. ETC 1998, 55, 217. [Google Scholar]
- Atom and the Archetype: The Pauli/Jung Letters 1932-1958; Meier, C. A., Ed.; Princeton University Press: Princeton, US, 2014. [Google Scholar]
- Atmanspacher, H.; Fuchs C., Eds., The Pauli-Jung Conjecture, Imprint Academics: Exter, UK, 2014.
- Lindorss, D. Pauli and Jung, Quest Books: Wheaton Illinois, US, 2009.
- Jung, C. G. Synchronicity: An Acausal Connecting Principle, Bollingen Foundation: Bollingen, Switzerland, 1993.
- C. G.; Jung Pauli, W. The Interpretation of Nature and Psyche, Pantheon Books: New York, US, 1955.
- Blanco, I. M. The Unconscious as Infinite Sets. An Essay in Bi-logic, Karnac Books: London, UK, 1980.
- Blanco, I. M. Thinking, Feeling, and Being. Clinical Reflections on the Fundamental Antinomy of Human Beings and World, Routlege: London, UK, 1988.
- E. Rayner, Unconscious Logic. An Introduction to Matte Blanco’s Bi-Logic and Its Uses, Routledge: London, UK, 1995.
- Lombardi, R. Formless Infinity. Clinical Explorations of Matte Blanco and Bion, Routledge: London, UK, 2015.
- Goh, B. H.; Tong, E. S.; Pusparajah, P. Quantum Biology: Does quantum physics hold the key to revolutionizing medicine? Prog. Drug. Discov. Biomed. Sci. 2020, 3, a0000130. [Google Scholar] [CrossRef]
- Pessa, E.; Penna, M. P.; Bandinelli, P. L. Is quantum brain dynamics involved in some neuropsychiatric disorders? Medical Hypotheses 2000, 54, 767. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J. M.; Stapp, H. P.; Beauregard, M. Quantum physics in neuroscience and psychology: a neurophysical model of mind brain interaction. Phylosophical Transactions of the Royal Society B 2005, 360, 1309. [Google Scholar] [CrossRef]
- Conant, R. C.; Ashby, W. R. Every good regulator of a system must be a model of that system. Int. J. Systems Sci. 1970, 1, 89. [Google Scholar] [CrossRef]
- Tanaka, S.; Umegaki, T.; Nishiyama, A.; Kitoh-Nishioka, H. Dynamical Free Energy Based Model for Quantum Decision Making. Physica A 2022, 605, 127979. [Google Scholar] [CrossRef]
- Khrennikov, A. Quantum-like modeling of cognition. Frontiers in Physics 2015, 3, 77. [Google Scholar] [CrossRef]
- Khrennikov, A. Quantum-like modeling: cognition, decision making, and rationality. Mind & Society 2020, 19, 307. [Google Scholar]
- Busemeyer, J. R.; Bruza, P. D. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Khrennikov, A. Ubiquitous Quantum Structure: from Psychology to Finances; Springer: Berlin, Germany, 2010. [Google Scholar]
- Bond, R. L.; He, Y.-H.; Ormerod, T.C. A quantum framework for likelihood ratios. International Journal of Quantum Information 2018, 16, 1850002. [Google Scholar] [CrossRef]
- Basieva, I.; Pandey, V.; Khrennikova, P. More Causes Less Effect: Destructive Interference in Decision Making. Entropy 2022, 24, 725. [Google Scholar] [CrossRef] [PubMed]
- Busemeyer, J. R.; Pothos, E.; Franco, R.; Trueblood, J. S. A quantum theoretical explanation for probability judgment ’errors’. Psychological Review 2011, 118, 193. [Google Scholar] [CrossRef] [PubMed]
- Van den Noort, M.; Lim, S.; Bosch, P. On the need to unify neuroscience and physics. Neuroimmunology and Neuroinflammation 2016, 3, 271. [Google Scholar] [CrossRef]
- Silin, V. P. The Kinetics of Paramagnetic Phenomena. Zh. Teor. Eksp. Fiz. 1956, 30, 421. [Google Scholar]
- Rukhazade, A. A.; Silin, V. P. On the magnetic susceptibility of a relativistic electron gas. Soviet Phys. JETP 1960, 11, 463. [Google Scholar]
- Balescu, R. A. Covariant Formulation of Relativistic Quantum Statistical Mechanics, I. Phase Space Description of a Relativistic Quantum Plasma. Acta Phys. Aust. 1968, 28, 336. [Google Scholar]
- Zhang, W. Y.; Balescu, R. Statistical Mechanics of a spin-polarized plasma. J. Plasma Phys. 1988, 40, 199. [Google Scholar] [CrossRef]
- Balescu, R.; Zhang, W.Y. Kinetic equation, spin hydrodynamics and collisional depolarization rate in a spin polarized plasma. J. Plasma Phys. 1988, 40, 215. [Google Scholar] [CrossRef]
- Aleksandrov, I. V.; The Statistical Dynamics of a System Consisting of a Classical and a Quantum Subsystem. Z. Naturforsch. A 1981, 36, 902.
- Gerasimenko, V. I. Dynamical equations of quantum-classical systems. Theor. Math. Phys. 1982, 50, 49. [Google Scholar] [CrossRef]
- Boucher, W.; Traschen, J. Semiclassical physics and quantum fluctuations. Phys. Rev. D 1988, 37, 3522. [Google Scholar] [CrossRef]
- Petrina, D. Y.; Gerasimenko, V. I.; Enolskii, V. Z. Equations of motion of one class of quantum-classical systems. Sov. Phys. Dokl. 1990, 35, 925. [Google Scholar]
- Prezhdo, O. V.; Kisil, V. V. Mixing quantum and classical mechanics. Phys. Rev. A 1997, 56, 162. [Google Scholar] [CrossRef]
- Kapral, R.; Ciccotti, G. Mixed quantum-classical dynamics. J. Chem. Phys. 1999, 110, 8919. [Google Scholar] [CrossRef]
- Nielsen, S.; Kapral, R.; Ciccotti, G. Statistical mechanics of quantum-classical systems. J. Chem. Phys. 2001, 115, 5805. [Google Scholar] [CrossRef]
- Sergi, A. Non-Hamiltonian Commutators in Quantum Mechanics. Phys. Rev. E 2005, 72, 066125. [Google Scholar] [CrossRef] [PubMed]
- Sergi, A. Deterministic constant-temperature dynamics for dissipative quantum systems. J. Phys. A 2007, 40, F347. [Google Scholar] [CrossRef]
- Sergi, A.; Hanna, G.; Grimaudo, R.; Messina, A. Quasi-Lie Brackets and the Breaking of Time-Translation Symmetry for Quantum Systems Embedded in Classical Baths. Symmetry 2018, 10, 518. [Google Scholar] [CrossRef]
- Osborn, T. A.; Kondratèva, M. F.; Tabisz, G. C.; McQuarrie, B. R. Mixed Weyl symbol calculus and spectral line shape theory. J. Phys. A Math. Gen. 1999, 32, 4149. [Google Scholar] [CrossRef]
- Martens, C. C.; Fang, J. Y. Semiclassical-Limit Molecular Dynamics on Multiple Electronic Surfaces. J. Chem. Phys. 1996, 106, 4918. [Google Scholar] [CrossRef]
- Donoso, A.; Martens, C. C. Simulation of Coherent Nonadiabatic Dynamics Using Classical Trajectories. J. Phys. Chem. A 1998, 102, 4291. [Google Scholar] [CrossRef]
- Sergi, A.; Kapral, R. Quantum-Classical Limit of Quantum Correlation Functions. J. Chem. Phys. 2004, 121, 7565. [Google Scholar] [CrossRef] [PubMed]
- Uken, D. A.; Sergi, A. Quantum dynamics of a plasmonic metamolecule with a time-dependent driving. Theor. Chem. Acc. 2015, 134, 141. [Google Scholar] [CrossRef]
- Sergi, A.; Sinayskiy, I.; Petruccione, F. Numerical and Analytical Approach to the Quantum Dynamics of Two Coupled Spins in Bosonic Baths. Phys. Rev. A 2009, 80, 012108. [Google Scholar] [CrossRef]
- Sergi, A.; Kapral, R. Quantum-Classical Dynamics of Nonadiabatic Chemical Reactions. J. Chem. Phys. 2003, 118, 8566. [Google Scholar] [CrossRef]
- McFadden,J. Quantum Evolution; Norton: New York, USA, 2002. [Google Scholar]
- Joos, E.; Zeh, H. D.; Kiefer, C.; Giulini, D.; Kupsch, J.; Stamatescu, I.-O. Decoherence and the Appearance of a Classical World in Quantum Theory, Springer: Berlin, Germanny, 2003.
- Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715. [Google Scholar] [CrossRef]
- Tegmark, M. Importance of quantum decoherence in brain processes. Phys. Rev. E 2000, 61, 4194. [Google Scholar] [CrossRef] [PubMed]
- Stapp, H. P. The Copenhagen Interpretation. Am. J. Phys. 1972, 40, 1098. [Google Scholar] [CrossRef]
- von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, UK, 1983. [Google Scholar]
- Schrödinger, E. What is life? with Mind And Matter, and Autobiographical Sketches, Cambridge University Press: Cambridge, UK, 2013.
- Watson, J. D.; Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 1953, 171, 737. [Google Scholar] [CrossRef]
- Pray, L. Discovery of DNA structure and function: Watson and Crick. Nature Education 2008, 1, 100. [Google Scholar]
- Beyler, R. From Positivism to Organicism: Pascual Jordan’s Interpretations of Modem Physics in Cultural Contex. Ph.D diss., Harvard University, Harvard, 1994.
- Beyler, R. Targeting the Organism. The Scientific and Cultural Context of Pascual Jordan’s Quantum Biology, 1932-1947. Isis 1996, 87, 248. [Google Scholar] [CrossRef]
- Al-Khalili, J.; McFadden, J. Life on the Edge. The Coming of Age of Quantum Biology; Bantam Press: London, UK, 2014. [Google Scholar]
- Leggett, J. A.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P. A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two state system. Rev. Mod. Phys. 1987, 59, 1. [Google Scholar] [CrossRef]
- Bakemeier, L.; Alvermann, A.; Fehske, H. Quantum phase transition in the Dicke model with critical and noncritical entanglement. Phys. Rev. A 2012, 85, 043821. [Google Scholar] [CrossRef]
- Hwang, M.-J.; Puebla, R.; Plenio,M. B. Quantum Phase Transition and Universal Dynamics in the Rabi Model. Phys. Rev. Lett. 2015, 115, 180404. [Google Scholar] [CrossRef]
- Finney, G. A.; Gea-Banacloche:, J. Quasiclassical approximation for the spin-boson Hamiltonian with counterrotating terms. Phys. Rev. A 1994, 50, 2040. [Google Scholar] [CrossRef]
- Martyna, G. J.; Klein, M. L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 92, 2635. [Google Scholar] [CrossRef]
- Sergi, A.; Ferrario, M. Non-Hamiltonian Equations of Motion with a Conserved Energy. Phys. Rev. E 2001, 64. [Google Scholar] [CrossRef]
- Sergi, A. Non-Hamiltonian Equilibrium Statistical Mechanics. Phys. Rev. E 2003, 67, 021101. [Google Scholar] [CrossRef] [PubMed]
- Riddle, J.; McFerren, A.; Frohlich, F. Causal role of cross-frequency coupling in distinct components of cognitive control. Progress in Neurobiology 2021, 202, 102033. [Google Scholar] [CrossRef] [PubMed]
- Riddle, J.; Scimeca, J. M.; Cellier, D.; Dhanani, S.; D’Esposito, M. Causal Evidence for a Role of Theta and Alpha Oscillations in the Control of Working Memory. Current Biology 2020, 30, 1748. [Google Scholar] [CrossRef]
- Abubaker, M.; Al Qasem, W.; Kvas̆n̆ák, E. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations. Frontiers in Psychology 2021, 12, 756661. [Google Scholar] [CrossRef]
- Croce, P.; Zappasodi, F.; Capotosto, P. Offline stimulation of human parietal cortex differently affects resting EEG microstates. Scientific Reports 2018, 8, 1287. [Google Scholar] [CrossRef] [PubMed]
- Caruana, F.; Gerbella, M.; Avanzini, P.; Gozzo, F.; Pelliccia, V.; Mai, R.; R. O.; Abdollahi, Cardinale, F.; Sartori, I.; Lo Russo, G.; Rizzolatti, G. Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain 2018, 141, 3035.
- Nitsche, M. A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology 2000, 527, 633. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C. J.; Nitsche, M. A. Physiological Basis of Transcranial Direct Current Stimulation. Neuroscientist 2011, 17, 37. [Google Scholar] [CrossRef] [PubMed]
- Papazova, I.; Strube, W.; Wienert, A.; Henning, B.; Schwippel, T.; Fallgatter, A. J.; Padberg, F.; Falkai, P.; Plewnia, C.; Hasan, A. Effects of 1 mA and 2 mA transcranial direct current stimulation on working memory performance in healthy participants. Consciousness and Cognition 2020, 83, 102959. [Google Scholar] [CrossRef]
- Yavari, F.; Jamil, A.; Samani, M. M.; Vidor, L. P.; Nitsche, M. A. Basic and functional effects of transcranial Electrical Stimulation (tES)—an introduction. Neurosci. Biobehav. Rev. 2018, 85, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Frölich, F.; McCormick, D. A. Endogenous Electric Fields May Guide Neocortical Network Activity. 2010, 67, 129.
- Anastassiou, C. A.; Perin, R.; Markram, H.; Koch, C. Ephaptic coupling of cortical neurons. Nature Neuroscience 2011, 14, 217. [Google Scholar] [CrossRef]
- Martinez-Banaclocha, M. Ephaptic Coupling of Cortical Neurons: Possible Contribution of Astroglial Magnetic Fields? Neuroscience 2018, 370, 37. [Google Scholar] [CrossRef] [PubMed]
- Pinotsis, D. A.; Miller, E. K. Beyond dimension reduction: Stable electric fields emerge from and allow representational drift. NeuroImage 2022, 253, 119058. [Google Scholar] [CrossRef]
- Vicario, C. M.; Nitsche, M. A.; Hoysted, I.; Yavari, F.; Avenanti, A.; Salehinejad, M. A.; Felmingham, K. L. Anodal transcranial direct current stimulation over the ventromedial prefrontal cortex enhances fear extinction in healthy humans: A single blind sham-controlled study. Brain Stimul. 2020, 13, 489–491. [Google Scholar] [CrossRef]
- Ney, L. J.; Vicario, C. M.; Nitsche, M. A.; Felmingham, K. L. Timing matters: Transcranial direct current stimulation after extinction learning impairs subsequent fear extinction retention. Neurobiol Learn Mem. 2021, 177, 107356. [Google Scholar] [CrossRef] [PubMed]
- Markovir̀c, V.; Vicario, C. M.; Yavari, F.; Salehinejad, M. A.; Nitsche, M. A. A Systematic Review on the Effect of Transcranial Direct Current and Magnetic Stimulation on Fear Memory and Extinction. Front Hum Neurosci. 2021, 22, 655947. [Google Scholar] [CrossRef] [PubMed]
- Vicario, C. M.; Salehinejad, M. A.; Mosayebi-Samani, M.; Maezawa, H.; Avenanti, A.; Nitsche, M. A. Transcranial direct current stimulation over the tongue motor cortex reduces appetite in healthy humans. Brain Stimul. 2020, 13, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Nunez, P. L.; Srinivasan, R. The Neurophysics of EEG, Oxford University Press: Oxford, UK, 2006.
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 807. [Google Scholar] [CrossRef]
- Jaeger, G. Entanglement, Information, and the Interpretation of Quantum Mechanics, Springer: Berlin, Germany, 2009.
- Rescher, N. Process Metaphysics: An Introduction to Process Philosophy; SUNY Press: New York, USA, 1996. [Google Scholar]
- Capra, F. The Tao of Physics; Shambhala: Boston, USA, 2013. [Google Scholar]
- Friston, K. A free energy principle for biological systems. Entropy 2012, 14, 2100. [Google Scholar] [CrossRef] [PubMed]
- J. Sánchez-Can˜izares, The free energy principle: Good science and questionable philosophy in a grand unifying theory, Entropy 2021, 23 238.
- Ellis, A.; Harper, R. A. A New Guide to Rational Living, Wilshire Books: North Hollywood, US, 1977.
- Alfred Korzybski and Gestalt Therapy. Wysong, J. The Gestalt Journal 1998. Available online: www.gestalt.org/alfred.htm (accessed on 9 January 2023).
- Barlow, A. R. The Derivation of a Psychological Theory: Gestalt Therapy. PhD Thesis, University of Wollongong, Wollongong, Australia, 1983. [Google Scholar]
- Minuchin, S. Families and Family Therapy, Harvard University Press: Cambridge Massachussetts, US, 1974.
- Bowen, M. Family Therapy in Clinical Practice, Jason Aronson: New York, US, 1978.
- Ballentine, L. E. Quantum Mechanics, World Scientific: Singapore, Republic of Singapore, 2001.
- Weinberg, S. Lectures on Quantum Mechanics, Cambridge University Press: Cambridge, UK, 2013.
- Jung, C. G. The Archetypes and the Collective Unconscious, Routledge: New York, US, 1991.
- Deco, G.; Cruzata, J.; Cabral, J.; Tagliazucchi, E.; Laufs, H. Logothetis, N. K.; Kringelbach, M. L. Awakening: Predicting external stimulation to force transitions between different brain states. PNAS 2019, 116, 18088. [CrossRef] [PubMed]
- McCulloch, W. S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 1943, 5, 115. [Google Scholar] [CrossRef]
- Caianiello, E. R. J. Theor. Biol. 1961, 1, 204.
- Hodgikin, A. L.; Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiology 1952, 117, 500. [Google Scholar] [CrossRef]
- Schmitt, F. O.; New Scientist 1966, 23, 643.
- Arbib, M. Brain Machines and Mathematics, McGraw-Hill: London, UK, 1964.
- Agnati, L. F.; Marcoli, M.; Maura, G.; Woods, A.; Guidolin, D. The brain as a “hyper-network”: the key role of neural networkss as main producers of the integrated brain actions especially via the “broadcasted” neuroconnectomics. J. Neural. Transm. 2018, 125, 883. [Google Scholar] [CrossRef]
- Callen, H. B. Thermodynamics and an Introduction to Thermostatistics; John Wiley & Sons: New York, USA, 1985. [Google Scholar]
- Blundell, S. J.; Blundell, K. M. Concepts in Thermal Physics, Oxford University Press: Oxford, UK, 2006.
- Ohya, M.; Petz, M. Quantum Entropy and its Use; Springer: Berlin, Germany, 1993. [Google Scholar]
- Heusler, S.; Dür, W.; Ubben, M. S.; Hartmann, A. Aspects of entropy in classical and in quantum physics. J. Phys. A: Math. Theor. 2022, 55, 404006. [Google Scholar] [CrossRef]
- O. Portmann, A. Glzer, N. Saratz, O. V. Billoni, D. Pescia, and A. Vindign, Scaling hypothesis for modulated systems. Phys. Rev. B 2010, 82, 184409.
- Borycki, D.; Marćkowiak, J. Reentrant behavior of superconducting alloys. Supercond. Sci. Technol. 2011, 24, 035007. [Google Scholar] [CrossRef]
- Avraham, N.; Khaykovich, B.; Myasoedov, Y.; Rappaport, M.; Shtrikman, H.; Feldman, D. E.; Tamegai, T.; Kes, P. H.; Li, M.; Konczykowski, M.; van der Beek, K.; Zeldov, E. `Inverse’ melting of a vortex lattice. Nature 2001, 411, 451. [Google Scholar] [CrossRef] [PubMed]
- Wu, W. J.; He, Y. W.; Zhao, Z. G.; Liu, M.; Yang, Y. H. Inverse Melting of Vortex Lattice in Layered Superconductors. International Journal of Modern Physics B 2005, 19, 451. [Google Scholar] [CrossRef]
- Mukamel, S. Trees to trap photons. Nature 1997, 388, 425–427. [Google Scholar] [CrossRef]
- Jiang, D.-L.; Aida, T. Photoisomerization in dendrimers by harvesting of low-energy photons. Nature 1997, 388, 454–456. [Google Scholar] [CrossRef]
- Sergi, A; Grüning, M.; Ferrario, M.; Buda, F. A Density Functional Study of the PYP Chromophore. Journal of Physical Chemistry B 2001, 105, 4386.
- Zee, A. Quantum Field Theory in a Nutshell, Princeton University Press: Princeton, US, 2003.
- Romijn, H. Are virtual photon the elementary carriers of consciousness? J. Consciousness Study 2002, 9, 61–81. [Google Scholar]
- Mandl, F.; Shaw, G. Quantum Field Theory; John Wiley & Sons: New York, US, 1990. [Google Scholar]
- Ròżyk-Myrta, A.; Brodziak, A.; Muc-Wierzgoǹ, M. Neural Circuits, Microtubule Processing, Brain’s Electromagnetic Field—Components of Self-Awareness. Brain Sci. 2021, 11, 984. [Google Scholar] [CrossRef]
- Mattuck, R. D. A Guide to Feynman Diagrams in the Many-Body Problem; Dover: New York, USA, 1992. [Google Scholar]
- Mahan, G. D. Many-Particle Physics, Kluwer: Dordrecht, The Netherlands, 2000.
- Hameroff, S. R.; Watt, R. C. Information Processing in Microtubules. J. theor. Biol. 1982, 98, 549. [Google Scholar] [CrossRef] [PubMed]
- Smith, S. A.; Watt, R. C.; Hameroff, S. R. ; Cellular Automata In Cytoskeletal Lattices. Physica 1984, 10D, 168. [Google Scholar] [CrossRef]
- Hameroff, S. R.; Smith, S. A.; Watt, R. C. Automaton Model of Dynamic Organization in Microtubules. Annals of the New York Academy of Science 1986, 446, 949. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.; Karampurwala, H.; Vaidyanath, R.; Jensen, K. S.; Hameroff, S. Computational Connectionism Within Neurons: A Model Of Cytoskeletal Automata Subserving Neural Networks. Physica D 1990, 42, 428. [Google Scholar] [CrossRef]
- Lahoz-Beltra, R.; Hameroff, S. R.; Dayhoff, J. E. Cytoskeletal logic: a model for molecular computation via Boolean operations in microtubules and microtubule-associated proteins. BioSystems 1993, 29, 1. [Google Scholar] [CrossRef] [PubMed]
- Dayhoff, J.; Hameroff, S.; Lahoz-Beltra, R.; Swenberg, C. E. Cytoskeletal involvement in neuronal learning: a review. Eur. Biophys. J. 1994, 23, 79. [Google Scholar] [CrossRef] [PubMed]
- Kastner, R. E. The Transactional Interpretation of Quantum Mechanics, Cambridge University Press: Cambridge, UK, 2013.
- Kastner, R. E. Understanding our unseen Reality. Solving Quantum Riddles, Imperial College Press: London, UK, 2015.
- Wick, D. The Infamous Boundary. Seven Decades of Controversy in Quantum Physics, Springer: Berlin, Germany, 1995.
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems Oxford University Press: Oxford, UK, 2007.
- Goodson, H. V.; Jonasson, E. M. Microtubules and Microtubule-Associated Proteins. Cold Spring Harb. Perspect. Biol. 2018, 10, a022608. [Google Scholar] [CrossRef] [PubMed]
- Steiner, B.; Mandelkow, E.-M.; Biernat, J.; Gustke, N.; Meyer, H. E.; Schmidt, B.; Mieskes, G.; Soling, H. D.; Drechsel, D.; Kirschner, M. W.; Goedert, M.; Mandelkow, E. Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2+-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tanglesa. EMBO Journal 1990, 9, 3539. [Google Scholar] [CrossRef]
- Waxham, M. N. Calcium-Calmodulin Kinase II (CaMKII) in Learning and Memory, In Encyclopedia of Neuroscience 2009, 581-588.
- Baratier, J.; Peris, L.; Brocard, J.; Gory-Faurè, S.; Dufour, F.; Bosc, C.; Fourest-Lieuvin, A.; Blanchoin, L.; Salin, P.; Job, D.; Andrieux, A. Phosphorylation of Microtubule-associated Protein STOP by Calmodulin Kinase II. J. Biol. Chem. 2006, 281, 19561. [Google Scholar] [CrossRef]
- Craddock, T. J. A.; Tuszynski, J. A.; Hameroff, S. Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation? Comput. Biol. 2012, 8. [Google Scholar] [CrossRef]
- Vallano, M. L.; Goldenring, J. R.; Buckholz, T. M.; Larson, R. E.; Delorenzo, R. J. Separation of endogenous calmodulin- and cAMP-dependent kinases from microtubule preparations. Proc. Nad. Acad. Sci. 1985, 82, 3202. [Google Scholar] [CrossRef]
- Gradin, H. M.; Marklund, U.; Larsson, N.; Chatila, T. A.; Gullberg, M. Regulation of Microtubule Dynamics by Ca21/Calmodulin-Dependent Kinase IV/Gr-Dependent Phosphorylation of Oncoprotein 18. Molecular and Cellular Biology 1997, 17, 3459. [Google Scholar]
- Schulman, H.; Kuret, J.; Jefferson, A. B.; Nose, P. S.; Spitzer, K. H. Ca2+/Calmodulin-Dependent Microtubule-Associated Protein 2 Kinase: Broad Substrate Specificity and Multifunctional Potential in Diverse Tissues. Biochemistry 1985, 24, 5320. [Google Scholar] [CrossRef] [PubMed]
- Craddock, T. J. A.; Kurian, P.; Tuszynski, J. A.; Hameroff, S. R. Quantum Processes in Neurophotonics and the Origin of Brain’s Spatiotemporal Hierarchy. In Neurophotonics and Biomedical Spectroscopy Elsevier, Amsterdam, Holland, 2019; p. 189.
- Chang, J.-J.; Fisch, J.; Popp F.-A., Eds.; Biophotons, Springer: Dordrecht, Germany, 1998.
- Popp, F.-A.; Beloussov L., Eds.,Integrative Biophysics. Biophotonics, Springer: Dordrecht, Germany, 2003.
- Fels, D.; Cifra, M.; Scholkmann, F., Eds.; Fields of the Cell, Research Signpost: Kerala, India, 2015.
- Kurian, P.; Obisesan, T. O.; Craddock, T. J. A. Oxidative species-induced excitonic transport in tubulin aromatic networks: Potential implications for neurodegenerative disease. J. Photochem. Photobiol. B Biol. 2017, 175, 109. [Google Scholar] [CrossRef] [PubMed]
- Haken, H.; Strobl, G. An exactly solvable model for coherent and incoherent exciton motion. Z. Phys. 1973, 262, 135. [Google Scholar] [CrossRef]
- Abasto, D. F.; Mohseni, M.; Lloyd, S.; Zanardi, P. Exciton diffusion length in complex quantum systems: the effect of disorder and environmental fluctuations on symmetry-enhanced supertransfer. Phil. Trans. R. Soc. A 2012, 1972, 3750. [Google Scholar] [CrossRef]
- Celardo, C. L.; Giusteri, G. G.; Borgonovi, F. Cooperative robustness to static disorder: superradiance and localization in a nanoscale ring to model light-harvesting systems found in nature. Phys. Rev. B 2014, 90, 075113. [Google Scholar] [CrossRef]
- Celardo, C. L.; Poli, P.; Lussardi, L.; Borgonovi, F. Cooperative robustness to dephasing: single-exciton superradiance in a nanoscale ring to model light-harvesting systems. Phys. Rev. B 2014, 90, 085142. [Google Scholar] [CrossRef]
- Kalra, A. P.; Benny,; A.; Travis, S. M.; Zizzi, E. A.; Morales-Sanchez, A.; Oblinski, D. G.; Craddock, T. J. A.; Hameroff, S. R.; Maclever, M. B.; Tuszynski,; J. A.; Petry, S.; Penrose, R.; Scholes, G. D. Electronic Energy Migration in Microtubules. arXiv: 2208.10628 2022. Available online: https://arxiv.org/abs/2208.10628 (accessed on 9 January 2023).
- Veljkovic, V.; Veljkovic, N.; Esté, J. A.; Dietrich, U. Applicatiion of the EIIP/ISM Bionfomatics in Development of New Drugs. Current Medical Chemistry 2007, 14, 133. [Google Scholar] [CrossRef]
- L. M.; Ricciardi, Umezawa, H. Brain and Physics of Many-Body Problems. Kybernetik 1967, 4, 44-48.
- Umezawa, H.; Matsummoto, H.; Tachiki, M. Thermo Field Dynamics and Condensed States, North-Holland: Amsterdam, Holland, 1982.
- Umezawa, H. Advanced Field Theory. Micro Macro Thermal Physics, AIP: New York, US, 1995.
- Stone, M. H. On One-Parameter Unitary Groups in Hilbert Space. Annals of Mathematics 1932, 33, 643. [Google Scholar] [CrossRef]
- Stone, M. H. Linear Transformations in Hilbert Space: III. Operational Methods and Group Theory. PNAS 1930, 16. [Google Scholar] [CrossRef] [PubMed]
- Neumann, J. v. Uber Einen Satz Von Herrn M. H. Stone. Annals of Mathematics 1932, 33, 567. [Google Scholar] [CrossRef]
- Neumann, J. v. Die Eindeutigkeit der Schrödingerschen Operatoren. Mathematische Annalen 1931, 104, 570. [Google Scholar] [CrossRef]
- Nambu, Y. Quasiparticles and Gauge Invariance in the Theory of Superconductivity. Phys. Rev. 1960, 117, 648–663. [Google Scholar] [CrossRef]
- Goldstone, J. Field Theories with Superconductor Solutions. Nuovo Cimento 1961, 19, 154–164. [Google Scholar] [CrossRef]
- Goldstone, J.; Salam, A.; Weinberg, S. Broken Symmetries, Phys. Rev. 1962, 27, 965-970.
- Flannery, J. S.; Riedel, M. C.; Bottenhorn, K. L.; Poudel, R.; Salo, T.; Hill-Bowen, L. D.; Laird, A. R.; Sutherland, M. T. Meta-analytic clustering dissociates brain activity and behavior profiles across reward processing paradigms. Cognitive, Affective, and Behavioral Neuroscience 2020, 20, 215. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, A.; Sandoval-Espinosa, C.; Otero-Garcia, M.; Oh, I.; Yin, R.; Eze, U. C.; Nowakowski, T. J.; Kriegstein, A. R. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 2021, 598, 200. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. A Quantum Field Theoretical Approach to the Collective Behaviour of Biological Systems. Nucl. Phys. 1985, B251, 375–400. [Google Scholar] [CrossRef]
- Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. Electromagnetic field and spontaneous symmetry breakdown in biological matter. Nucl. Phys. 1986, B275, 185–199. [Google Scholar] [CrossRef]
- Del Giudice, E.; Vitiello, G. Preparata, G. Water as a free electron laser. Phys. Rev. Lett. 1988, 61, 1085–1088. [Google Scholar] [CrossRef]
- Jibu, M.; Yasue, K. Quantum brain dynamics and consciousness; John Benjamins, Amsterdam, The Netherlands, 1995.
- Jibu, M.; Yasue, K. What Is Mind? Quantum Field Theory of Evanescent Photons in Brain as Quantum Theory of Consciousness. Informatica 1997, 21, 471. [Google Scholar]
- Preparata, G. QED Coherence in Matter World Scientific: Singapore, Republic of Singapore, 1995.
- Ling, G. N. Life at the Cell and Below-Cell Level, Pacific Press: New York, US, 2001.
- Blasone, M.; Vitiello, G.; Jizba, P. Quantum Field Theory and its Macroscopic Manifestations. Boson Condensation, Ordered Patterns, and Topological Defects; Imperial College Press: London, UK, 2011. [Google Scholar]
- Nishiyama, A.; Tanaka, S.; Tuszynski, J. A. Nonequilibrium quantum brain dynamics: Super-Radiance and Equilibration in 2+1 Dimensions. Entropy 2019, 21, 1066. [Google Scholar] [CrossRef]
- Nishiyama, A.; Tuszynski, J. A. Non-Equilibrium Φ4 theory for networks: toward memory formations with quantum brain dynamics. J. Phys. Communications 2019, 3, 055020. [Google Scholar] [CrossRef]
- Nishiyama, A.; Tanaka, S.; Tuszynski, J. A. Nonequilibrium quantum brain dynamics, Chap. 5 in Advances in Quantum Chemistry 82, 159 2020. 82, 2020; 82. [Google Scholar]
- Nishiyama, A.; Tanaka, S.; Tuszynski, J. A. Non-Equilibrium Quantum Brain Dynamics II: Formulation in 3+1 Dimensions. Physica A 2021, 567, 125706. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).