Submitted:
28 January 2023
Posted:
29 January 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Electromagnetic Fields in the Brain
3. Penrose and Hameroff’s Orch OR
4. The Dissipative Quantum Model of Brain
5. The Quantum-Classical Dissipative Model of Brain
5.1. Constant Temperature Quantum-Classical Dynamics
6. The Quantum-Classical Perspective on the Brain and Clinical Psychology
6.1. General Semantics
6.2. Pauli and Jung’s Synchronicity
6.3. The Psychology of Bi-Logic
7. Conclusions
References
- Schwartz, J. L. Shuttling between the particular and the general: Reflections on the role of conjectures and hypothesis in the generation of knowledge in science and mathematics. In Software goes to Schools, Perkins, D. N., Schwartz, K. L., West, M. M., Wisse, M. S., Eds.; Oxford University Press, Oxford, UK, 1995.
- von Bartheld, C.S.; Bahney, J.; and Herculano-Houzel, S. The Search for True Numbers of Neurons and Glial Cells in the Human Brain: A Review of 150 Years of Cell Counting. Journal of Comparative Neurology 2016, 524, 3865. [CrossRef]
- McIlwain, H.; Bachelard, H. S. Biochemistry and the Central Nervous System, Churchill Livingstone: Edinburgh, Scotland, 1985.
- Bengtsson, I.; Zyczkowski, K. Geometry of Quantum States. An Introduction to Quantum Entanglement, Cambridge University Press: Cambridge, UK, 2006.
- Scarani, V. Quantum Physics. A First Encounter. Interference, Entanglement, and Reality, Oxford University Press: Oxford, UK, 2006.
- Jaeger, G. Entanglement, Information, and the Interpretation of Quantum Mechanics, Springer: Berlin, Germany, 2009.
- Ballentine, L. E. Quantum Mechanics, World Scientific: Singapore, Republic of Singapore, 2001.
- Cook, D. B. Probability and Schrödinger Mechanics, World Scientific: Singapore, Republic of Singapore, 2002.
- McFadden, J. Integrating information in the brain’s EM field: the cemi field theory of consciousness. Neuroscience of Consciousness 2020, 6, niaa016. [CrossRef]
- McFadden, J. Synchronous Firing and Its Influence on the Brain’s Electromagnetic Field. Journal of Consciousness Studies 2002, 9, 23.
- McFadden, J. The CEMI Field Theory: Closing the loop. Journal of Consciousness Studies 2013, 20, 153.
- Hales, C. G.; Pockett, S. The relationship between local field potentials (LFPs) and the electromagnetic fields that give rise to them. Frontiers in Neuroscience 2014, 8, 1-4. [CrossRef]
- Pockett, S.; Brennan, B. J.; Bold, G. E. J.; Holmes, M. D. A possible physiological basis for the discontinuity of consciousness. Frontiers in Psychology 2011, 2, 377. [CrossRef]
- Pockett, S.; Holmes, M. D. Intracranial EEG power spectra and phase synchrony during consciousness and unconsciousness. Consciousness and Cognition 2009, 18, 1049. [CrossRef]
- Liboff, A. R. Magnetic correlates in electromagnetic consciousness. Electromagnetic Biology and Medicine 2016, 35, 228. [CrossRef]
- Liboff, A. R. A human source for ELF magnetic perturbations. Electromagnetic Biology and Medicine 2016, 35, 337. [CrossRef]
- Fröhlich, F.; McCormick, D. A. Endogenous Electric Fields May Guide Neocortical Network Activity. Neuron 2010, 67, 129. [CrossRef]
- Hameroff, S.; Penrose, R. Consciousness events as orchestrated space-time selections. Journal of Consciousness Studies 1996, 2, 36.
- Hameroff, S.; Penrose, R. Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Mathematics and Computers in Simulation 1996, 40, 453. [CrossRef]
- Hameroff, S.; Penrose, R. Consciousness in the universe. A review of the `Orch OR’ theory. Physics of Life Reviews 2014, 11, 39.
- Penrose, R. On Gravity’s Role in Quantum State Reduction. General Relativity and Gravitation 1996, 8, 581.
- Penrose, R. On the Gravitization of Quantum Mechanics 1: Quantum State Reduction. Found. Phys. 2014, 44, 557. [CrossRef]
- Penrose, R. On the Gravitization of Quantum Mechanics 2: Conformal Cyclic Cosmology. Found. Phys. 2014, 44, 873. [CrossRef]
- Penrose, R. The Emperor’s New Mind, Oxford University Press: Oxford, UK, 1989.
- Penrose, R. Shadows of the Mind, Oxford University Press: Oxford, UK, 1994.
- Hameroff, S.; Nip, A.; Porter, M.; Tuszynski, J. Conduction pathways in microtubules, biological quantum computation, and consciousness. Biosystems 2002, 64, 149. [CrossRef]
- Craddock, T. J. A.; Hameroff, S. R.; Ayoub, A. T.; Klobukowski, M.; Tuszynski, J. A. Anestetics Act in Quantum Channels in Brain Microtubules to Prevent Consciousness. Current Topics in Medicinal Chemistry 2015, 15, 523.
- Fisher, M. P. A. Annals of Physics 2015, 362, 593.
- Kerskens, C. M.; Pérez, D. L. Experimental indications of non-classical brain functions. J. Phys. Communications 2022, 6 105001. [CrossRef]
- Hameroff, S. R. The Brain is Both Neurocomputer and Quantum Computer. Cognitive Science 2007, 31, 1035. [CrossRef]
- L. M.; Ricciardi, Umezawa, H. Brain and Physics of Many-Body Problems. Kybernetik 1967, 4, 44-48.
- Pessa, E.; Vitiello, G. Quantum dissipation and Neural Net Dynamics. Bioelectrochemistry and Bioenergetics 1999, 48, 339–342. [CrossRef]
- E.; Alfinito, Vitiello, G. The dissipative quantum model of brain: how does memory localize in correlated neuronal domain. Information Sciences 2000, 128, 217-229. [CrossRef]
- W. J. Freeman and G. Vitiello, The Dissipative Quantum Model of Brain and Laboratory Observations, in Physics of Emergence and Organization, 233-251 (World Scientific, Singapore, 2008).
- Freeman, W. J.; Vitiello, G. Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Physics of Life Reviews 2006, 3, 93. [CrossRef]
- Freeman, W. J.; Vitiello, G. Dissipative neurodynamics in perception forms cortical patterns that are stabilized by vortices. J. Phys.: Conference Series 2009, 174, 012011. [CrossRef]
- Vitiello, G. Fractals as macroscopic manifestation of squeezed coherent states and brain dynamics. J. Phys.: Conference Series 2012, 380, 012021. [CrossRef]
- Vitiello, G. The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning. Current Opinion in Neurobiology 2014, 31, 7. [CrossRef]
- Sabbadini, S. A.; Vitiello, G. Entanglement and Phase-Mediated Correlations in Quantum Field Theory. Application to Brain-Mind States. Applied Sciences 2019, 9, 3203. [CrossRef]
- Silin, V. P. The Kinetics of Paramagnetic Phenomena. Zh. Teor. Eksp. Fiz. 1956, 30, 421.
- Rukhazade, A. A.; Silin, V. P. On the magnetic susceptibility of a relativistic electron gas. Soviet Phys. JETP 1960, 11, 463.
- Balescu, R. A. Covariant Formulation of Relativistic Quantum Statistical Mechanics, I. Phase Space Description of a Relativistic Quantum Plasma. Acta Phys. Aust. 1968, 28, 336.
- Zhang, W. Y.; Balescu, R. Statistical Mechanics of a spin-polarized plasma. J. Plasma Phys. 1988, 40, 199. [CrossRef]
- Balescu, R.; Zhang, W.Y. Kinetic equation, spin hydrodynamics and collisional depolarization rate in a spin polarized plasma. J. Plasma Phys. 1988, 40, 215.
- Osborn, T. A.; Kondratèva, M. F.; Tabisz, G. C.; McQuarrie, B. R. Mixed Weyl symbol calculus and spectral line shape theory. J. Phys. A Math. Gen. 1999, 32, 4149. [CrossRef]
- Kapral, R.; Ciccotti, G. Mixed quantum-classical dynamics. J. Chem. Phys. 1999, 110, 8919. [CrossRef]
- Aleksandrov, I. V.; The Statistical Dynamics of a Systit Consisting of a Classical and a Quantum Subsystem. Z. Naturforsch. A 1981, 36, 902.
- Gerasimenko, V. I. Dynamical equations of quantum-classical systems. Theor. Math. Phys. 1982, 50, 49. [CrossRef]
- Boucher, W.; Traschen, J. Semiclassical physics and quantum fluctuations. Phys. Rev. D 1988, 37, 3522. [CrossRef]
- Petrina, D. Y.; Gerasimenko, V. I.; Enolskii, V. Z. Equations of motion of one class of quantum-classical systems. Sov. Phys. Dokl. 1990, 35, 925.
- Martens, C. C.; Fang, J. Y. Semiclassical-Limit Molecular Dynamics on Multiple Electronic Surfaces. J. Chem. Phys. 1996, 106, 4918. [CrossRef]
- Prezhdo, O. V.; Kisil, V. V. Mixing quantum and classical mechanics. Phys. Rev. A 1997, 56, 162. [CrossRef]
- Donoso, A.; Martens, C. C. Simulation of Coherent Nonadiabatic Dynamics Using Classical Trajectories. J. Phys. Chem. A 1998, 102, 4291. [CrossRef]
- Nielsen, S.; Kapral, R.; Ciccotti, G. Statistical mechanics of quantum-classical systems. J. Chem. Phys. 2001, 115, 5805. [CrossRef]
- Sergi, A.; Kapral, R. Quantum-Classical Limit of Quantum Correlation Functions. J. Chem. Phys. 2004, 121, 7565. [CrossRef]
- Sergi, A. Non-Hamiltonian Commutators in Quantum Mechanics. Phys. Rev. E 2005, 72, 066125. [CrossRef]
- Sergi, A. Deterministic constant-temperature dynamics for dissipative quantum systems. J. Phys. A 2007, 40, F347. [CrossRef]
- Sergi, A.; Hanna, G.; Grimaudo, R.; Messina, A. Quasi-Lie Brackets and the Breaking of Time-Translation Symmetry for Quantum Systems Embedded in Classical Baths. Symmetry 2018, 10, 518. [CrossRef]
- Uken, D. A.; Sergi, A. Quantum dynamics of a plasmonic metamolecule with a time-dependent driving. Theor. Chem. Acc. 2015, 134, 141. [CrossRef]
- Sergi, A.; Sinayskiy, I.; Petruccione, F. Numerical and Analytical Approach to the Quantum Dynamics of Two Coupled Spins in Bosonic Baths. Phys. Rev. A 2009, 80, 012108. [CrossRef]
- Leggett, J. A.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P. A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two state system. Rev. Mod. Phys. 1987, 59, 1. [CrossRef]
- Bakemeier, L.; Alvermann, A.; Fehske, H. Quantum phase transition in the Dicke model with critical and noncritical entanglement. Phys. Rev. A 2012, 85, 043821. [CrossRef]
- Hwang, M.-J.; Puebla, R.; Plenio,M. B. Quantum Phase Transition and Universal Dynamics in the Rabi Model. Phys. Rev. Lett. 2015, 115, 180404. [CrossRef]
- Finney, G. A.; Gea-Banacloche: J. Quasiclassical approximation for the spin-boson Hamiltonian with counterrotating terms. Phys. Rev. A 1994, 50, 2040. [CrossRef]
- Goh, B. H.; Tong, E. S.; Pusparajah, P. Quantum Biology: Does quantum physics hold the key to revolutionizing medicine? Prog. Drug. Discov. Biomed. Sci. 2020, 3, a0000130.
- Zak, M. From quantum entanglement to mirror neuron. Chaos, Solitons & Fractals 2007, 34, 344. [CrossRef]
- Pessa, E.; Penna, M. P.; Bandinelli, P. L. Is quantum brain dynamics involved in some neuropsychiatric disorders? Medical Hypotheses 2000, 54, 767.
- Schwartz, J. M.; Stapp, H. P.; Beauregard, M. Quantum physics in neuroscience and psychology: a neurophysical model of mind brain interaction. Phylosophical Transactions of the Royal Society B 2005, 360, 1309. [CrossRef]
- Korzybski, A. Science and Sanity. An Introduction to Non-Aristotelian Systems and General Semantics, Institute of General Semantics: Fort Worth, US, 2005. [CrossRef]
- Kodish, S. B.; Kodish, B. I. Drive Yourself Sane. Using the Uncommon Sense of General Semantics Extensional Publishing: Pasadena, US, 2011.
- Korzybski, A. Alfred Korzybski: Collected Writings 1920-1950, Institute of General Semantics: Englewood, US, 1990.
- Meier, C. A., Ed., Atom and the Archetype: The Pauli/Jung Letters 1932-1958, Princeton University Press: Princeton, US, 2014.
- Atmanspacher, H.; Fuchs C., Eds., The Pauli-Jung Conjecture, Imprint Academics: Exter, UK, 2014.
- Lindorss, D. Pauli and Jung, Quest Books: Wheaton Illinois, US, 2009.
- Jung, C. G. Synchronicity: An Acausal Connecting Principle, Bollingen Foundation: Bollingen, Switzerland, 1993.
- C. G.; Jung Pauli, W. The Interpretation of Nature and Psyche, Pantheon Books: New York, US, 1955.
- Blanco, I. M. The Unconscious as Infinite Sets. An Essay in Bi-logic, Karnac Books: London, UK, 1980. [CrossRef]
- Blanco, I. M. Thinking, Feeling, and Being. Clinical Reflections on the Fundamental Antinomy of Human Beings and World, Routlege: London, UK, 1988.
- E. Rayner, Unconscious Logic. An Introduction to Matte Blanco’s Bi-Logic and Its Uses, Routledge: London, UK, 1995.
- Lombardi, R. Formless Infinity. Clinical Explorations of Matte Blanco and Bion, Routledge: London, UK, 2015.
- Deco, G.; Cruzata, J.; Cabral, J.; Tagliazucchi, E.; Laufs, H. Logothetis, N. K.; Kringelbach, M. L. Awakening: Predicting external stimulation to force transitions between different brain states. PNAS 2019, 116, 18088. [CrossRef]
- Riddle, J.; McFerren, A.; Frohlich, F. Causal role of cross-frequency coupling in distinct components of cognitive control. Progress in Neurobiology 2021, 202, 102033. [CrossRef]
- Riddle, J.; Scimeca, J. M.; Cellier, D.; Dhanani, S.; D’Esposito, M. Causal Evidence for a Role of Theta and Alpha Oscillations in the Control of Working Memory. Current Biology 2020, 30, 1748. [CrossRef]
- Abubaker, M.; Al Qasem, W.; Kvas̆n̆ák, E. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations. Frontiers in Psychology 2021, 12, 756661. [CrossRef]
- Croce, P.; Zappasodi, F.; Capotosto, P. Offline stimulation of human parietal cortex differently affects resting EEG microstates. Scientific Reports 2018, 8, 1287. [CrossRef]
- Caruana, F.; Gerbella, M.; Avanzini, P.; Gozzo, F.; Pelliccia, V.; Mai, R.; R. O.; Abdollahi, Cardinale, F.; Sartori, I.; Lo Russo, G.; Rizzolatti, G. Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex, Brain 2018, 141, 3035. [CrossRef]
- Nitsche, M. A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology 2000, 527, 633. [CrossRef]
- Stagg, C. J.; Nitsche, M. A. Physiological Basis of Transcranial Direct Current Stimulation. Neuroscientist 2011, 17, 37. [CrossRef]
- Yavari, F.; Jamil, A.; Samani, M. M.; Vidor, L. P.; Nitsche, M. A. Basic and functional effects of transcranial Electrical Stimulation (tES)—an introduction. Neurosci. Biobehav. Rev. 2018, 85, 81–92.
- Romijn, H. Are virtual photon the elementary carriers of consciousness? J. Consciousness Study 2002, 9, 61-81.
- Mukamel, S. Trees to trap photons. Nature 1997, 388, 425-427. [CrossRef]
- Jiang, D.-L.; Aida, T. Photoisomerization in dendrimers by harvesting of low-energy photons. Nature 1997, 388, 454–456. [CrossRef]
- Mandl, F.; Shaw, G. Quantum Field Theory, John Wiley & Sons: New York, US, 1990.
- Ròżyk-Myrta, A.; Brodziak, A.; Muc-Wierzgoǹ, M. Neural Circuits, Microtubule Processing, Brain’s Electromagnetic Field—Components of Self-Awareness. Brain Sci. 2021, 11, 984. [CrossRef]
- McCulloch, W. S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 1943, 5, 115. [CrossRef]
- Caianiello, E. R. J. Theor. Biol. 1961, 1, 204.
- Hodgikin, A. L.; Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiology 1952, 117, 500. [CrossRef]
- Schmitt, F. O.; New Scientist 1966, 23, 643.
- Arbib, M. Brain Machines and Mathematics, McGraw-Hill: London, UK, 1964. [CrossRef]
- Agnati, L. F.; Marcoli, M.; Maura, G.; Woods, A.; Guidolin, D. The brain as a “hyper-network”: the key role of neural networkss as main producers of the integrated brain actions especially via the “broadcasted” neuroconnectomics. J. Neural. Transm. 2018, 125, 883.
- Schrödinger, E. What is life? with Mind And Matter, and Autobiographical Sketches, Cambridge University Press: Cambridge, UK, 2013.
- Frölich, F.; McCormick, D. A. Endogenous Electric Fields May Guide Neocortical Network Activity. 2010, 67, 129.
- Anastassiou, C. A.; Perin, R.; Markram, H.; Koch, C. Ephaptic coupling of cortical neurons. Nature Neuroscience 2011, 14, 217. [CrossRef]
- Martinez-Banaclocha, M. Ephaptic Coupling of Cortical Neurons: Possible Contribution of Astroglial Magnetic Fields? Neuroscience 2018, 370, 37.
- Pinotsis, D. A.; Miller, E. K. Beyond dimension reduction: Stable electric fields emerge from and allow representational drift. NeuroImage 2022, 253, 119058. [CrossRef]
- Vicario, C. M.; Nitsche, M. A.; Hoysted, I.; Yavari, F.; Avenanti, A.; Salehinejad, M. A.; Felmingham, K. L. Anodal transcranial direct current stimulation over the ventromedial prefrontal cortex enhances fear extinction in healthy humans: A single blind sham-controlled study. Brain Stimul. 2020, 13, 489-491. [CrossRef]
- Ney, L. J.; Vicario, C. M.; Nitsche, M. A.; Felmingham, K. L. Timing matters: Transcranial direct current stimulation after extinction learning impairs subsequent fear extinction retention. Neurobiol Learn Mem. 2021, 177, 107356. [CrossRef]
- Markovir̀c, V.; Vicario, C. M.; Yavari, F.; Salehinejad, M. A.; Nitsche, M. A. A Systematic Review on the Effect of Transcranial Direct Current and Magnetic Stimulation on Fear Memory and Extinction. Front Hum Neurosci. 2021, 22, 655947. [CrossRef]
- Vicario, C. M.; Salehinejad, M. A.; Mosayebi-Samani, M.; Maezawa, H.; Avenanti, A.; Nitsche, M. A. Transcranial direct current stimulation over the tongue motor cortex reduces appetite in healthy humans. Brain Stimul. 2020, 13, 1121-1123. [CrossRef]
- Zee, A. Quantum Field Theory in a Nutshell, Princeton University Press: Princeton, US, 2003.
- Hameroff, S. R.; Watt, R. C. Information Processing in Microtubules. J. theor. Biol. 1982, 98, 549. [CrossRef]
- Smith, S. A.; Watt, R. C.; Hameroff, S. R.; Cellular Automata In Cytoskeletal Lattices. Physica 1984, 10D, 168. [CrossRef]
- Hameroff, S. R.; Smith, S. A.; Watt, R. C. Automaton Model of Dynamic Organization in Microtubules. Annals of the New York Academy of Science 1986, 446, 949. [CrossRef]
- Rasmussen, S.; Karampurwala, H.; Vaidyanath, R.; Jensen, K. S.; Hameroff, S. Computational Connectionism Within Neurons: A Model Of Cytoskeletal Automata Subserving Neural Networks. Physica D 1990, 42, 428. [CrossRef]
- Lahoz-Beltra, R.; Hameroff, S. R.; Dayhoff, J. E. Cytoskeletal logic: a model for molecular computation via Boolean operations in microtubules and microtubule-associated proteins. BioSystems 1993, 29, 1. [CrossRef]
- Dayhoff, J.; Hameroff, S.; Lahoz-Beltra, R.; Swenberg, C. E.; Cytoskeletal involvement in neuronal learning: a review. Eur. Biophys. J. 1994, 23, 79. [CrossRef]
- Kastner, R. E.; The Transactional Interpretation of Quantum Mechanics, Cambridge University Press: Cambridge, UK, 2013.
- Kastner, R. E. Understanding our unseen Reality. Solving Quantum Riddles, Imperial College Press: London, UK, 2015.
- Wick, D. The Infamous Boundary. Seven Decades of Controversy in Quantum Physics, Springer: Berlin, Germany, 1995.
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems Oxford University Press: Oxford, UK, 2007.
- Joos, E.; Zeh, H. D.; Kiefer, C.; Giulini, D.; Kupsch, J.; Stamatescu, I.-O. Decoherence and the Appearance of a Classical World in Quantum Theory, Springer: Berlin, Germanny, 2003.
- Goodson, H. V.; Jonasson, E. M. Microtubules and Microtubule-Associated Proteins. Cold Spring Harb. Perspect. Biol. 2018, 10, a022608.
- Steiner, B.; Mandelkow, E.-M.; Biernat, J.; Gustke, N.; Meyer, H. E.; Schmidt, B.; Mieskes, G.; Soling, H. D.; Drechsel, D.; Kirschner, M. W.; Goedert, M.; Mandelkow, E. Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2+-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tanglesa. EMBO Journal 1990, 9, 3539.
- Waxham, M. N. Calcium-Calmodulin Kinase II (CaMKII) in Learning and Memory, In Encyclopedia of Neuroscience 2009, 581-588.
- Baratier, J.; Peris, L.; Brocard, J.; Gory-Faurè, S.; Dufour, F.; Bosc, C.; Fourest-Lieuvin, A.; Blanchoin, L.; Salin, P.; Job, D.; Andrieux, A. Phosphorylation of Microtubule-associated Protein STOP by Calmodulin Kinase II. J. Biol. Chem. 2006, 281, 19561. [CrossRef]
- Craddock, T. J. A.; Tuszynski, J. A.; Hameroff, S. Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation? Comput. Biol. 2012, 8 e1002421.
- Vallano, M. L.; Goldenring, J. R.; Buckholz, T. M.; Larson, R. E.; Delorenzo, R. J. Separation of endogenous calmodulin- and cAMP-dependent kinases from microtubule preparations. Proc. Nad. Acad. Sci. 1985, 82, 3202.
- Gradin, H. M.; Marklund, U.; Larsson, N.; Chatila, T. A.; Gullberg, M. Regulation of Microtubule Dynamics by Ca21/Calmodulin-Dependent Kinase IV/Gr-Dependent Phosphorylation of Oncoprotein 18. Molecular and Cellular Biology 1997, 17, 3459.
- Schulman, H.; Kuret, J.; Jefferson, A. B.; Nose, P. S.; Spitzer, K. H. Ca2+/Calmodulin-Dependent Microtubule-Associated Protein 2 Kinase: Broad Substrate Specificity and Multifunctional Potential in Diverse Tissues. Biochemistry 1985, 24, 5320.
- Craddock, T. J. A.; Kurian, P.; Tuszynski, J. A.; Hameroff, S. R. Quantum Processes in Neurophotonics and the Origin of Brain’s Spatiotemporal Hierarchy. In Neurophotonics and Biomedical Spectroscopy Elsevier, Amsterdam, Holland, 2019; p. 189.
- Chang, J.-J.; Fisch, J.; Popp F.-A., Eds.; Biophotons, Springer: Dordrecht, Germany, 1998.
- Popp, F.-A.; Beloussov L., Eds.,Integrative Biophysics. Biophotonics, Springer: Dordrecht, Germany, 2003.
- Fels, D.; Cifra, M.; Scholkmann, F., Eds.; Fields of the Cell, Research Signpost: Kerala, India, 2015.
- Kurian, P.; Obisesan, T. O.; Craddock, T. J. A. Oxidative species-induced excitonic transport in tubulin aromatic networks: Potential implications for neurodegenerative disease. J. Photochem. Photobiol. B Biol. 2017, 175, 109. [CrossRef]
- Haken, H.; Strobl, G. An exactly solvable model for coherent and incoherent exciton motion. Z. Phys. 1973, 262, 135. [CrossRef]
- Abasto, D. F.; Mohseni, M.; Lloyd, S.; Zanardi, P. Exciton diffusion length in complex quantum systems: the effect of disorder and environmental fluctuations on symmetry-enhanced supertransfer. Phil. Trans. R. Soc. A 2012, 1972, 3750. [CrossRef]
- Celardo, C. L.; Giusteri, G. G.; Borgonovi, F. Cooperative robustness to static disorder: superradiance and localization in a nanoscale ring to model light-harvesting systems found in nature. Phys. Rev. B 2014, 90, 075113. [CrossRef]
- Celardo, C. L.; Poli, P.; Lussardi, L.; Borgonovi, F. Cooperative robustness to dephasing: single-exciton superradiance in a nanoscale ring to model light-harvesting systems. Phys. Rev. B 2014, 90, 085142. [CrossRef]
- Kalra, A. P.; Benny,; A.; Travis, S. M.; Zizzi, E. A.; Morales-Sanchez, A.; Oblinski, D. G.; Craddock, T. J. A.; Hameroff, S. R.; Maclever, M. B.; Tuszynski,; J. A.; Petry, S.; Penrose, R.; Scholes, G. D. Electronic Energy Migration in Microtubules. arXiv: 2208.10628 2022, available online: https://arxiv.org/abs/2208.10628 (accessed on 9 January 2023). [CrossRef]
- Veljkovic, V.; Veljkovic, N.; Esté, J. A.; Dietrich, U. Applicatiion of the EIIP/ISM Bionfomatics in Development of New Drugs. Current Medical Chemistry 2007, 14, 133.
- Flannery, J. S.; Riedel, M. C.; Bottenhorn, K. L.; Poudel, R.; Salo, T.; Hill-Bowen, L. D.; Laird, A. R.; Sutherland, M. T. Meta-analytic clustering dissociates brain activity and behavior profiles across reward processing paradigms. Cognitive, Affective, and Behavioral Neuroscience 2020, 20, 215. [CrossRef]
- Bhaduri, A.; Sandoval-Espinosa, C.; Otero-Garcia, M.; Oh, I.; Yin, R.; Eze, U. C.; Nowakowski, T. J.; Kriegstein, A. R. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 2021, 598, 200. [CrossRef]
- Budson, A. E.; Kenneth, R. A.; Kensinger, E. A. Consciousness as a Memory System. Cognitive and Behavioral Neurology 2022, 10, 197.
- Nambu, Y. Quasiparticles and Gauge Invariance in the Theory of Superconductivity. Phys. Rev. 1960, 117 648–663.
- Goldstone, J. Field Theories with Superconductor Solutions. Nuovo Cimento 1961, 19 154–164.
- Goldstone, J.; Salam, A.; Weinberg, S. Broken Symmetries, Phys. Rev. 1962, 27, 965-970.
- Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. A Quantum Field Theoretical Approach to the Collective Behaviour of Biological Systems. Nucl. Phys. 1985, B251, 375-400. [CrossRef]
- Del Giudice, E.; Doglia, S.; Milani, M.; Vitiello, G. Electromagnetic field and spontaneous symmetry breakdown in biological matter. Nucl. Phys. 1986, B275, 185-199.
- Del Giudice, E.; Vitiello, G. Preparata, G. Water as a free electron laser. Phys. Rev. Lett. 1988, 61, 1085-1088.
- Preparata, G. QED Coherence in Matter World Scientific: Singapore, Republic of Singapore, 1995.
- Ling, G. N. Life at the Cell and Below-Cell Level, Pacific Press: New York, US, 2001.
- Umezawa, H.; Matsummoto, H.; Tachiki, M. Thermo Field Dynamics and Condensed States, North-Holland: Amsterdam, Holland, 1982.
- Umezawa, H. Advanced Field Theory. Micro Macro Thermal Physics, AIP: New York, US, 1995.
- Nishiyama, A.; Tanaka, S.; Tuszynski, J. A. Nonequilibrium quantum brain dynamics: Super-Radiance and Equilibration in 2+1 Dimensions. Entropy 2019, 21, 1066. arXiv:10.3390/e21111066.
- Nishiyama, A.; Tuszynski, J. A. Non-Equilibrium Φ4 theory for networks: toward memory formations with quantum brain dynamics. J. Phys. Communications 2019, 3, 055020.
- Nishiyama, A.; Tanaka, S.; Tuszynski, J. A. Nonequilibrium quantum brain dynamics, Chap. 5 in Advances in Quantum Chemistry 82, 159 2020,.
- Martyna, G. J.; Klein, M. L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 92, 2635.
- Sergi, A.; Ferrario, M. Non-Hamiltonian Equations of Motion with a Conserved Energy. Phys. Rev. E 2001, 64 056125. arXiv:10.1103/physreve.64.056125.
- Sergi, A. Non-Hamiltonian Equilibrium Statistical Mechanics. Phys. Rev. E 2003, 67, 021101. arXiv:10.1103/physreve.67.021101.
- Khrennikov, A. Quantum-like modeling of cognition. Frontiers in Physics 2015, 3, 77. arXiv:10.3389/fphy.2015.00077.
- W. James, The Principles of Psychology (Harvard University Press, Boston, 1983).
- N. Rescher, Process Metaphysics: An Introduction to Process Philosophy (SUNY Press, New York, 1996).
- F. Capra, The Tao of Physics (Shambhala, Boston, 2013).
- Christopher, P. They’re Stealing Our General Semantics, ETC 1998, 55, 217.
- Ellis, A.; Harper, R. A. A New Guide to Rational Living, Wilshire Books: North Hollywood, US, 1977.
- Alfred Korzybski and Gestalt Therapy. Wysong, J. The Gestalt Journal 1998, Available online: www.gestalt.org/alfred.htm (accessed on 9 January 2023).
- Barlow, A. R. The Derivation of a Psychological Theory: Gestalt Therapy. PhD Thesis, University of Wollongong, Wollongong, Australia, 1983.
- Minuchin, S. Families and Family Therapy, Harvard University Press: Cambridge Massachussetts, US, 1974.
- Bowen, M. Family Therapy in Clinical Practice, Jason Aronson: New York, US, 1978.
- Weinberg, S. Lectures on Quantum Mechanics, Cambridge University Press: Cambridge, UK, 2013.
- Jung, C. G. The Archetypes and the Collective Unconscious, Routledge: New York, US, 1991.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
