Emes, E.; Faye, A.; Naylor, N.; Belay, D.; Ngom, B.; Fall, A.G.; Knight, G.; Dione, M. Drivers of Antibiotic Use in Semi-Intensive Poultry Farms: Evidence from a Survey in Senegal. Antibiotics2023, 12, 460.
Emes, E.; Faye, A.; Naylor, N.; Belay, D.; Ngom, B.; Fall, A.G.; Knight, G.; Dione, M. Drivers of Antibiotic Use in Semi-Intensive Poultry Farms: Evidence from a Survey in Senegal. Antibiotics 2023, 12, 460.
Emes, E.; Faye, A.; Naylor, N.; Belay, D.; Ngom, B.; Fall, A.G.; Knight, G.; Dione, M. Drivers of Antibiotic Use in Semi-Intensive Poultry Farms: Evidence from a Survey in Senegal. Antibiotics2023, 12, 460.
Emes, E.; Faye, A.; Naylor, N.; Belay, D.; Ngom, B.; Fall, A.G.; Knight, G.; Dione, M. Drivers of Antibiotic Use in Semi-Intensive Poultry Farms: Evidence from a Survey in Senegal. Antibiotics 2023, 12, 460.
Abstract
Antimicrobial resistance (AMR), the capacity of microbial pathogens to survive in the presence of antimicrobials, is considered one of the greatest threats to human health worldwide and is growing rapidly in importance. AMR is thought to be driven in part by the use of antimicrobials (AMU) in livestock production. AMU reduction in agriculture is therefore important, but doing so may endanger farmers’ incomes and hamper broader food security. Understanding drivers for farmers' antibiotics use is essential to designing interventions which avoid harming agricultural output and safeguard farmers’ economic security. In this study, we analyse AMUSE survey data from poultry farmers in Senegal to explore the effects of vaccination, attitudes towards AMR, and biosecurity practices on: AMU, animal mortality, and farm productivity. We found that farmers with more “AMR-aware” attitudes may be less likely to use antibiotics in healthy birds. Stronger on-farm biosecurity was associated with less use of antibiotics in healthy birds, and in some specifications was linked to higher broiler productivity. Vaccination and AMU were both linked with higher disease prevalence, and both factors appeared conducive to higher broiler productivity. Overall, there is evidence that awareness-raising and biosecurity improvements could encourage prudent use of antibiotics, and that biosecurity and vaccination could to some extent replace antibiotic use as productivity-enhancing and disease-management tools in broiler farms. Finally, issues of farm antimicrobial stewardship must be considered at the structural level, with farm behaviours contingent on interaction with state and private stakeholders.
Keywords
antimicrobial resistance; antimicrobial stewardship; One Health; agriculture; biosecurity
Subject
Biology and Life Sciences, Animal Science, Veterinary Science and Zoology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.