Submitted:
27 August 2024
Posted:
28 August 2024
Read the latest preprint version here
Abstract
Three Fresnel coefficients for the normal incidence of electromagnetic radiation on monolayer graphene establish three complementary fine-structure constants, two of which are negative. Each introduces its own specific set of Planck units. Hence, two sets of basic Planck units are real and two are imaginary. The elementary charge is the same in all those sets of Planck units, establishing equality between the products of each fine-structure constant and the speed of light it is associated with, and defining the dark electron in each of these three complementary systems. All fine-structure constants are related to each other through the constant of pi, which indicates that they do not vary over time. The negative complementary fine-structure constant established by the graphene reflectance is dual to the fine-structure constant. The assumption of universality of the black hole entropy formula to the remaining two stellar objects emitting perfect black-body radiation less dense than a black hole (neutron stars and white dwarfs) renders their energies exceeding their mass-energy equivalence. To accommodate this unphysical result, we introduced an imaginary mass and defined three complex energies in terms of real and imaginary Planck units, storing the surplus energy in their imaginary parts. It follows that black holes are fundamentally uncharged and have a vanishing imaginary mass. We have derived the lower bound on the mass of a charged black-body object, the upper bound on a white dwarf radius, and the equilibrium density of all three complex energies. The complex force between real masses and imaginary charges leads to the complex black-body object's surface gravity and generalized Hawking radiation complex temperature. Furthermore, based on the Bohr model for the hydrogen atom, we show that complex conjugates of this force represent atoms and antiatoms. The proposed model considers the value(s) of the fine-structure constant(s), which is(are) otherwise neglected in general relativity, and explains the registered (GWOSC) high masses of neutron star mergers and the associated fast radio bursts (CHIME) without resorting to any hypothetical types of exotic stellar objects.
Keywords:
1. Introduction
2. Three Complementary Fine-Structure Constants
2.1. Reflectance
2.2. Transmittance and Absorptance
2.3. Summary
3. Complementary Sets of Planck Units
4. Black Body Objects
5. Complex Energies
6. Complex Forces
7. Extended Bohr Model
8. BB Complex Gravity and Temperature
9. BB Mergers
10. BB Fluctuations
11. Discussion
Acknowledgments
Abbreviations
| ED | emergent dimensionality |
| EMR | electromagnetic radiation |
| MLG | monolayer graphene |
| T | transmittance |
| R | reflectance |
| A | absorptance |
| any of the fine-structure constants | |
| or | |
| or | |
| or | |
| BH | black hole |
| NS | neutron star |
| WD | white dwarf |
| BB | black-body object |
| HS | holographic sphere |
| STM | size-to-mass ratio |
| GR | general relativity |
| HUP | Heisenberg’s uncertainty principle |
Appendix A. Mlg Transmittance, Absorptance, and Reflectance as Functions of π Only

Appendix B. π-like Constants
Appendix C. Mlg Fresnel Equation and Euclid’s Formula
Appendix D. Why α Is Better for Biological Evolution than α 2 ?
Appendix E. Planck Units and HUP
Appendix F. Other Definitions of Complex Energies
Appendix G. Hall Effect
References
- de Chardin, P.T. The Phenomenon of Man; Harper, New York, 1959.
- Prigogine, I.; Stengers, I. Order out of Chaos: Man’s New Dialogue with Nature; Bantam Books, 1984.
- Melamede, R. Dissipative Structures and the Origins of Life. Unifying Themes in Complex Systems IV; Minai, A.A.; Bar-Yam, Y., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; pp. 80–87.
- Vedral, V. Decoding Reality: The Universe as Quantum Information; Oxford University Press, 2010. [CrossRef]
- Łukaszyk, S. Life as the Explanation of the Measurement Problem. Journal of Physics: Conference Series 2024, 2701, 012124. [CrossRef]
- Łukaszyk, S., Black Hole Horizons as Patternless Binary Messages and Markers of Dimensionality. In Future Relativity, Gravitation, Cosmology; Nova Science Publishers, 2023; chapter 15, pp. 317–374. [CrossRef]
- Vopson, M.M.; Lepadatu, S. Second law of information dynamics. AIP Advances 2022, 12, 075310. [CrossRef]
- Sharma, A.; Czégel, D.; Lachmann, M.; Kempes, C.P.; Walker, S.I.; Cronin, L. Assembly theory explains and quantifies selection and evolution. Nature 2023, 622, 321–328. [CrossRef]
- Łukaszyk, S.; Bieniawski, W. Assembly Theory of Binary Messages. Mathematics 2024, 12, 1600. [CrossRef]
- Walker, S.I. Life as no one knows it: The physics of life’s emergence; Riverhead Books: New York, 2024.
- Platonic Solids in All Dimensions, 2020.
- Taubes, C.H. Gauge theory on asymptotically periodic {4}-manifolds. Journal of Differential Geometry 1987, 25. [CrossRef]
- Łukaszyk, S. Four Cubes, 2021. arXiv:2007.03782 [math].
- Lukaszyk, S. Solving the black hole information paradox. Research Outreach 2023. [CrossRef]
- Brukner, Č. A No-Go Theorem for Observer-Independent Facts. Entropy 2018, 20. [CrossRef]
- Łukaszyk, S. Novel Recurrence Relations for Volumes and Surfaces of n-Balls, Regular n-Simplices, and n-Orthoplices in Real Dimensions. Mathematics 2022, 10, 2212. [CrossRef]
- Łukaszyk, S.; Tomski, A. Omnidimensional Convex Polytopes. Symmetry 2023, 15. [CrossRef]
- Planck, M. Über irreversible Strahlungsvorgänge, 1899.
- Stoney, G.J. LII. On the physical units of nature. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1881, 11, 381–390. [CrossRef]
- Kuzmenko, A.B.; van Heumen, E.; Carbone, F.; van der Marel, D. Universal dynamical conductance in graphite. Physical Review Letters 2008, 100, 117401. arXiv:0712.0835 [cond-mat], . [CrossRef]
- Mak, K.F.; Sfeir, M.Y.; Wu, Y.; Lui, C.H.; Misewich, J.A.; Heinz, T.F. Measurement of the Optical Conductivity of Graphene. Physical Review Letters 2008, 101, 196405. [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene. Science 2008, 320, 1308–1308. arXiv:0803.3718 [cond-mat], . [CrossRef]
- Stauber, T.; Peres, N.M.R.; Geim, A.K. Optical conductivity of graphene in the visible region of the spectrum. Physical Review B 2008, 78, 085432. [CrossRef]
- Wang, X.; Chen, B. Origin of Fresnel problem of two dimensional materials. Scientific Reports 2019, 9, 17825. [CrossRef]
- Merano, M. Fresnel coefficients of a two-dimensional atomic crystal. Physical Review A 2016, 93, 013832. [CrossRef]
- Ando, T.; Zheng, Y.; Suzuura, H. Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices. Journal of the Physical Society of Japan 2002, 71, 1318–1324. [CrossRef]
- Zhu, S.E.; Yuan, S.; Janssen, G.C.A.M. Optical transmittance of multilayer graphene. EPL (Europhysics Letters) 2014, 108, 17007. [CrossRef]
- Ivanov, I.G.; Hassan, J.U.; Iakimov, T.; Zakharov, A.A.; Yakimova, R.; Janzén, E. Layer-number determination in graphene on SiC by reflectance mapping. Carbon 2014, 77, 492–500. [CrossRef]
- Varlaki, P.; Nadai, L.; Bokor, J. Number Archetypes in System Realization Theory Concerning the Fine Structure Constant. 2008 International Conference on Intelligent Engineering Systems; IEEE: Miami, FL, 2008; pp. 83–92. [CrossRef]
- Scardigli, F. Some heuristic semi-classical derivations of the Planck length, the Hawking effect and the Unruh effect. Il Nuovo Cimento B (1971-1996) 1995, 110, 1029–1034. [CrossRef]
- Haug, E.G. Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a Newton force spring. Journal of Physics Communications 2020, 4, 075001. [CrossRef]
- Verlinde, E. On the origin of gravity and the laws of Newton. Journal of High Energy Physics 2011, 2011, 29. [CrossRef]
- Chung, Y.; Kim, M.; Kim, Y.; Cha, S.; Park, J.W.; Park, J.; Yi, Y.; Song, D.; Ryu, J.H.; Lee, K.; Kim, T.K.; Cacho, C.; Denlinger, J.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Kim, K.S. Dark states of electrons in a quantum system with two pairs of sublattices. Nature Physics 2024. [CrossRef]
- Schneider, L.; Ton, K.T.; Ioannidis, I.; Neuhaus-Steinmetz, J.; Posske, T.; Wiesendanger, R.; Wiebe, J. Proximity superconductivity in atom-by-atom crafted quantum dots. Nature 2023. [CrossRef]
- Hiller, R.; Putterman, S.J.; Barber, B.P. Spectrum of synchronous picosecond sonoluminescence. Physical Review Letters 1992, 69, 1182–1184. [CrossRef]
- Eberlein, C. Theory of quantum radiation observed as sonoluminescence. Physical Review A 1996, 53, 2772–2787. [CrossRef]
- Lohse, D.; Schmitz, B.; Versluis, M. Snapping shrimp make flashing bubbles. Nature 2001, 413, 477–478. [CrossRef]
- Rietman, E.A.; Melcher, B.; Bobrick, A.; Martire, G. A Cylindrical Optical-Space Black Hole Induced from High-Pressure Acoustics in a Dense Fluid. Universe 2023, 9, 162. [CrossRef]
- Melia, F. A Candid Assessment of Standard Cosmology. Publications of the Astronomical Society of the Pacific 2022, 134, 121001. [CrossRef]
- Boylan-Kolchin, M. Stress testing ΛCDM with high-redshift galaxy candidates. Nature Astronomy 2023. [CrossRef]
- Mortlock, D.J.; Warren, S.J.; Venemans, B.P.; Patel, M.; Hewett, P.C.; McMahon, R.G.; Simpson, C.; Theuns, T.; Gonzáles-Solares, E.A.; Adamson, A.; Dye, S.; Hambly, N.C.; Hirst, P.; Irwin, M.J.; Kuiper, E.; Lawrence, A.; Röttgering, H.J.A. A luminous quasar at a redshift of z = 7.085. Nature 2011, 474, 616–619. [CrossRef]
- Bosman, S.E.I.; Álvarez Márquez, J.; Colina, L.; Walter, F.; Alonso-Herrero, A.; Ward, M.J.; Östlin, G.; Greve, T.R.; Wright, G.; Bik, A.; Boogaard, L.; Caputi, K.; Costantin, L.; Eckart, A.; García-Marín, M.; Gillman, S.; Hjorth, J.; Iani, E.; Ilbert, O.; Jermann, I.; Labiano, A.; Langeroodi, D.; Peißker, F.; Rinaldi, P.; Topinka, M.; Van Der Werf, P.; Güdel, M.; Henning, T.; Lagage, P.O.; Ray, T.P.; Van Dishoeck, E.F.; Vandenbussche, B. A mature quasar at cosmic dawn revealed by JWST rest-frame infrared spectroscopy. Nature Astronomy 2024. [CrossRef]
- Comerón, S.; Trujillo, I.; Cappellari, M.; Buitrago, F.; Garduño, L.E.; Zaragoza-Cardiel, J.; Zinchenko, I.A.; Lara-López, M.A.; Ferré-Mateu, A.; Dib, S. The massive relic galaxy NGC 1277 is dark matter deficient: From dynamical models of integral-field stellar kinematics out to five effective radii. Astronomy & Astrophysics 2023, 675, A143. [CrossRef]
- Brouwer, M.M.; others. First test of Verlinde’s theory of emergent gravity using weak gravitational lensing measurements. Monthly Notices of the Royal Astronomical Society 2017, 466, 2547–2559. [CrossRef]
- Schimmoller, A.J.; McCaul, G.; Abele, H.; Bondar, D.I. Decoherence-free entropic gravity: Model and experimental tests. Physical Review Research 2021, 3, 033065. [CrossRef]
- Lukaszyk, S. A No-go Theorem for Superposed Actions (Making Schrödinger’s Cat Quantum Nonlocal). In New Frontiers in Physical Science Research Vol. 3; Purenovic, D.J., Ed.; Book Publisher International (a part of SCIENCEDOMAIN International), 2022; pp. 137–151. arXiv:1801.08537 [quant-ph], . [CrossRef]
- Qian, K.; Wang, K.; Chen, L.; Hou, Z.; Krenn, M.; Zhu, S.; Ma, X.s. Multiphoton non-local quantum interference controlled by an undetected photon. Nature Communications 2023, 14, 1480. [CrossRef]
- Xue, P.; Xiao, L.; Ruffolo, G.; Mazzari, A.; Temistocles, T.; Cunha, M.T.; Rabelo, R. Synchronous Observation of Bell Nonlocality and State-Dependent Contextuality. Physical Review Letters 2023, 130, 040201. [CrossRef]
- Tran, D.M.; Nguyen, V.D.; Ho, L.B.; Nguyen, H.Q. Increased success probability in Hardy’s nonlocality: Theory and demonstration. Phys. Rev. A 2023, 107, 042210. [CrossRef]
- Colciaghi, P.; Li, Y.; Treutlein, P.; Zibold, T. Einstein-Podolsky-Rosen Experiment with Two Bose-Einstein Condensates. Phys. Rev. X 2023, 13, 021031. [CrossRef]
- Kreuzgruber, E.; Wagner, R.; Geerits, N.; Lemmel, H.; Sponar, S. Violation of a Leggett-Garg Inequality Using Ideal Negative Measurements in Neutron Interferometry. Physical Review Letters 2024, 132, 260201. [CrossRef]
- Watanabe, S. Knowing and Guessing: A Quantitative Study of Inference and Information; Wiley, 1969.
- Watanabe, S. Epistemological Relativity. Annals of the Japan Association for Philosophy of Science 1986, 7, 1–14. [CrossRef]
- Saeed, I.; Pak, H.K.; Tlusty, T. Quasiparticles, flat bands and the melting of hydrodynamic matter. Nature Physics 2023. [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [CrossRef]
- Vincentelli, F.M.; et al.. A shared accretion instability for black holes and neutron stars. Nature 2023, 615, 45–49. [CrossRef]
- Valenzuela-Villaseca, V.; Suttle, L.; Suzuki-Vidal, F.; Halliday, J.; Merlini, S.; Russell, D.; Tubman, E.; Hare, J.; Chittenden, J.; Koepke, M.; Blackman, E.; Lebedev, S. Characterization of Quasi-Keplerian, Differentially Rotating, Free-Boundary Laboratory Plasmas. Physical Review Letters 2023, 130, 195101. [CrossRef]
- Chaitin, G.J. On the Length of Programs for Computing Finite Binary Sequences. J. ACM 1966, 13, 547–569. [CrossRef]
- Hawking, S. Black hole explosions? Nature 1974, 248, 30–31. [CrossRef]
- Alsing, P.M.; Milburn, G.J. Teleportation with a Uniformly Accelerated Partner. Phys. Rev. Lett. 2003, 91, 180404. [CrossRef]
- Hooft, G.t. Dimensional Reduction in Quantum Gravity, 1993. [CrossRef]
- Gould, A. Classical derivation of black-hole entropy. Physical Review D 1987, 35, 449–454. [CrossRef]
- Penrose, R.; Floyd, R.M. Extraction of Rotational Energy from a Black Hole. Nature Physical Science 1971, 229, 177–179. [CrossRef]
- Christodoulou, D.; Ruffini, R. Reversible Transformations of a Charged Black Hole. Physical Review D 1971, 4, 3552–3555. [CrossRef]
- Stuchlík, Z.; Kološ, M.; Tursunov, A. Penrose Process: Its Variants and Astrophysical Applications. Universe 2021, 7, 416. [CrossRef]
- Zhang, T. Electric Charge as a Form of Imaginary Energy, 2008.
- Anderson, E.K.; Baker, C.J.; Bertsche, W.; Bhatt, N.M.; Bonomi, G.; Capra, A.; Carli, I.; Cesar, C.L.; Charlton, M.; Christensen, A.; Collister, R.; Cridland Mathad, A.; Duque Quiceno, D.; Eriksson, S.; Evans, A.; Evetts, N.; Fabbri, S.; Fajans, J.; Ferwerda, A.; Friesen, T.; Fujiwara, M.C.; Gill, D.R.; Golino, L.M.; Gomes Gonçalves, M.B.; Grandemange, P.; Granum, P.; Hangst, J.S.; Hayden, M.E.; Hodgkinson, D.; Hunter, E.D.; Isaac, C.A.; Jimenez, A.J.U.; Johnson, M.A.; Jones, J.M.; Jones, S.A.; Jonsell, S.; Khramov, A.; Madsen, N.; Martin, L.; Massacret, N.; Maxwell, D.; McKenna, J.T.K.; Menary, S.; Momose, T.; Mostamand, M.; Mullan, P.S.; Nauta, J.; Olchanski, K.; Oliveira, A.N.; Peszka, J.; Powell, A.; Rasmussen, C.; Robicheaux, F.; Sacramento, R.L.; Sameed, M.; Sarid, E.; Schoonwater, J.; Silveira, D.M.; Singh, J.; Smith, G.; So, C.; Stracka, S.; Stutter, G.; Tharp, T.D.; Thompson, K.A.; Thompson, R.I.; Thorpe-Woods, E.; Torkzaban, C.; Urioni, M.; Woosaree, P.; Wurtele, J.S. Observation of the effect of gravity on the motion of antimatter. Nature 2023, 621, 716–722. [CrossRef]
- Mandelstam, L.; Tamm, I. The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics. J. Phys. (USSR) 1945, 9, 249––254.
- Margolus, N.; Levitin, L.B. The maximum speed of dynamical evolution. Physica D: Nonlinear Phenomena 1998, 120, 188–195. [CrossRef]
- Levitin, L.B.; Toffoli, T. Fundamental Limit on the Rate of Quantum Dynamics: The Unified Bound Is Tight. Physical Review Letters 2009, 103, 160502. [CrossRef]
- Iyer, B.R.; Vishveshwara, C.V.; Dhurandhar, S.V. Ultracompact (R<3 M) objects in general relativity. Classical and Quantum Gravity 1985, 2, 219–228. [CrossRef]
- Nemiroff, R.J.; Becker, P.A.; Wood, K.S. Properties of ultracompact neutron stars. The Astrophysical Journal 1993, 406, 590. [CrossRef]
- Lightman, A.P.; Press, W.H.; Price, R.H.; Teukolsky, S.A. Problem Book in Relativity and Gravitation; Princeton University Press, 2017. [CrossRef]
- Weinberg, S. Gravitation and cosmology: Principles and applications of the general theory of relativity; Wiley: New York, 1972.
- Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. American Journal of Physics 1988, 56, 395–412. [CrossRef]
- Pechenick, K.R.; Ftaclas, C.; Cohen, J.M. Hot spots on neutron stars - The near-field gravitational lens. The Astrophysical Journal 1983, 274, 846. [CrossRef]
- The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. The Astrophysical Journal Letters 2019, 875, L1. [CrossRef]
- Montgomery, C.; Orchiston, W.; Whittingham, I. Michell, Laplace and the Origin of the Black Hole Concept. Journal of Astronomical History and Heritage 2009, 12, 90–96. [CrossRef]
- Szostek, K.; Szostek, R. The derivation of the general form of kinematics with the universal reference system. Results in Physics 2018, 8, 429–437. [CrossRef]
- Szostek, R. The Original Method of Deriving Transformations for Kinematics with a Universal Reference System. Jurnal Fizik Malaysia 2022, 43, 10244–10263.
- Szostek, R.; Szostek, K. The Existence of a Universal Frame of Reference, in Which it Propagates Light, is Still an Unresolved Problem of Physics. Jordan Journal of Physics 2022, 15, 457–467. [CrossRef]
- Szostek, R. Explanation of What Time in Kinematics Is and Dispelling Myths Allegedly Stemming from the Special Theory of Relativity. Applied Sciences 2022, 12, 6272. [CrossRef]
- Unnikrishnan, C.S. Cosmic Gravity and the Quantum Spin. In New Relativity in the Gravitational Universe; Springer International Publishing: Cham, 2022; Vol. 209, pp. 373–405. [CrossRef]
- Unnikrishnan, C.S. Cosmic Relativity—The Theory and Its Primary Fundamental Results. In New Relativity in the Gravitational Universe; Springer International Publishing: Cham, 2022; Vol. 209, pp. 255–306. [CrossRef]
- Szostek, Karol and Szostek, Roman. The concept of a mechanical system for measuring the one-way speed of light. Technical Transactions 2023, 2023, 1–9. [CrossRef]
- Event Horizon Telescope Collaboration.; Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bauböck, M.; Benson, B.A.; Bintley, D.; Blackburn, L.; Blundell, R.; Bouman, K.L.; Bower, G.C.; Boyce, H.; Bremer, M.; Brinkerink, C.D.; Brissenden, R.; Britzen, S.; Broderick, A.E.; Broguiere, D.; Bronzwaer, T.; Bustamante, S.; Byun, D.Y.; Carlstrom, J.E.; Ceccobello, C.; Chael, A.; Chan, C.k.; Chatterjee, K.; Chatterjee, S.; Chen, M.T.; Chen, Y.; Cheng, X.; Cho, I.; Christian, P.; Conroy, N.S.; Conway, J.E.; Cordes, J.M.; Crawford, T.M.; Crew, G.B.; Cruz-Osorio, A.; Cui, Y.; Davelaar, J.; Laurentis, M.D.; Deane, R.; Dempsey, J.; Desvignes, G.; Dexter, J.; Dhruv, V.; Doeleman, S.S.; Dougal, S.; Dzib, S.A.; Eatough, R.P.; Emami, R.; Falcke, H.; Farah, J.; Fish, V.L.; Fomalont, E.; Ford, H.A.; Fraga-Encinas, R.; Freeman, W.T.; Friberg, P.; Fromm, C.M.; Fuentes, A.; Galison, P.; Gammie, C.F.; García, R.; Gentaz, O.; Georgiev, B.; Goddi, C.; Gold, R.; Gómez-Ruiz, A.I.; Gómez, J.L.; Gu, M.; Gurwell, M.; Hada, K.; Haggard, D.; Haworth, K.; Hecht, M.H.; Hesper, R.; Heumann, D.; Ho, L.C.; Ho, P.; Honma, M.; Huang, C.W.L.; Huang, L.; Hughes, D.H.; Ikeda, S.; Impellizzeri, C.M.V.; Inoue, M.; Issaoun, S.; James, D.J.; Jannuzi, B.T.; Janssen, M.; Jeter, B.; Jiang, W.; Jiménez-Rosales, A.; Johnson, M.D.; Jorstad, S.; Joshi, A.V.; Jung, T.; Karami, M.; Karuppusamy, R.; Kawashima, T.; Keating, G.K.; Kettenis, M.; Kim, D.J.; Kim, J.Y.; Kim, J.; Kim, J.; Kino, M.; Koay, J.Y.; Kocherlakota, P.; Kofuji, Y.; Koch, P.M.; Koyama, S.; Kramer, C.; Kramer, M.; Krichbaum, T.P.; Kuo, C.Y.; Bella, N.L.; Lauer, T.R.; Lee, D.; Lee, S.S.; Leung, P.K.; Levis, A.; Li, Z.; Lico, R.; Lindahl, G.; Lindqvist, M.; Lisakov, M.; Liu, J.; Liu, K.; Liuzzo, E.; Lo, W.P.; Lobanov, A.P.; Loinard, L.; Lonsdale, C.J.; Lu, R.S.; Mao, J.; Marchili, N.; Markoff, S.; Marrone, D.P.; Marscher, A.P.; Martí-Vidal, I.; Matsushita, S.; Matthews, L.D.; Medeiros, L.; Menten, K.M.; Michalik, D.; Mizuno, I.; Mizuno, Y.; Moran, J.M.; Moriyama, K.; Moscibrodzka, M.; Müller, C.; Mus, A.; Musoke, G.; Myserlis, I.; Nadolski, A.; Nagai, H.; Nagar, N.M.; Nakamura, M.; Narayan, R.; Narayanan, G.; Natarajan, I.; Nathanail, A.; Fuentes, S.N.; Neilsen, J.; Neri, R.; Ni, C.; Noutsos, A.; Nowak, M.A.; Oh, J.; Okino, H.; Olivares, H.; Ortiz-León, G.N.; Oyama, T.; Özel, F.; Palumbo, D.C.M.; Paraschos, G.F.; Park, J.; Parsons, H.; Patel, N.; Pen, U.L.; Pesce, D.W.; Piétu, V.; Plambeck, R.; PopStefanija, A.; Porth, O.; Pötzl, F.M.; Prather, B.; Preciado-López, J.A.; Psaltis, D.; Pu, H.Y.; Ramakrishnan, V.; Rao, R.; Rawlings, M.G.; Raymond, A.W.; Rezzolla, L.; Ricarte, A.; Ripperda, B.; Roelofs, F.; Rogers, A.; Ros, E.; Romero-Cañizales, C.; Roshanineshat, A.; Rottmann, H.; Roy, A.L.; Ruiz, I.; Ruszczyk, C.; Rygl, K.L.J.; Sánchez, S.; Sánchez-Argüelles, D.; Sánchez-Portal, M.; Sasada, M.; Satapathy, K.; Savolainen, T.; Schloerb, F.P.; Schonfeld, J.; Schuster, K.F.; Shao, L.; Shen, Z.; Small, D.; Sohn, B.W.; SooHoo, J.; Souccar, K.; Sun, H.; Tazaki, F.; Tetarenko, A.J.; Tiede, P.; Tilanus, R.P.J.; Titus, M.; Torne, P.; Traianou, E.; Trent, T.; Trippe, S.; Turk, M.; Van Bemmel, I.; Van Langevelde, H.J.; Van Rossum, D.R.; Vos, J.; Wagner, J.; Ward-Thompson, D.; Wardle, J.; Weintroub, J.; Wex, N.; Wharton, R.; Wielgus, M.; Wiik, K.; Witzel, G.; Wondrak, M.F.; Wong, G.N.; Wu, Q.; Yamaguchi, P.; Yoon, D.; Young, A.; Young, K.; Younsi, Z.; Yuan, F.; Yuan, Y.F.; Zensus, J.A.; Zhang, S.; Zhao, G.Y.; Zhao, S.S.; Agurto, C.; Allardi, A.; Amestica, R.; Araneda, J.P.; Arriagada, O.; Berghuis, J.L.; Bertarini, A.; Berthold, R.; Blanchard, J.; Brown, K.; Cárdenas, M.; Cantzler, M.; Caro, P.; Castillo-Domínguez, E.; Chan, T.L.; Chang, C.C.; Chang, D.O.; Chang, S.H.; Chang, S.C.; Chen, C.C.; Chilson, R.; Chuter, T.C.; Ciechanowicz, M.; Colin-Beltran, E.; Coulson, I.M.; Crowley, J.; Degenaar, N.; Dornbusch, S.; Durán, C.A.; Everett, W.B.; Faber, A.; Forster, K.; Fuchs, M.M.; Gale, D.M.; Geertsema, G.; González, E.; Graham, D.; Gueth, F.; Halverson, N.W.; Han, C.C.; Han, K.C.; Hasegawa, Y.; Hernández-Rebollar, J.L.; Herrera, C.; Herrero-Illana, R.; Heyminck, S.; Hirota, A.; Hoge, J.; Hostler Schimpf, S.R.; Howie, R.E.; Huang, Y.D.; Jiang, H.; Jinchi, H.; John, D.; Kimura, K.; Klein, T.; Kubo, D.; Kuroda, J.; Kwon, C.; Lacasse, R.; Laing, R.; Leitch, E.M.; Li, C.T.; Liu, C.T.; Liu, K.Y.; Lin, L.C.C.; Lu, L.M.; Mac-Auliffe, F.; Martin-Cocher, P.; Matulonis, C.; Maute, J.K.; Messias, H.; Meyer-Zhao, Z.; Montaña, A.; Montenegro-Montes, F.; Montgomerie, W.; Moreno Nolasco, M.E.; Muders, D.; Nishioka, H.; Norton, T.J.; Nystrom, G.; Ogawa, H.; Olivares, R.; Oshiro, P.; Pérez-Beaupuits, J.P.; Parra, R.; Phillips, N.M.; Poirier, M.; Pradel, N.; Qiu, R.; Raffin, P.A.; Rahlin, A.S.; Ramírez, J.; Ressler, S.; Reynolds, M.; Rodríguez-Montoya, I.; Saez-Madain, A.F.; Santana, J.; Shaw, P.; Shirkey, L.E.; Silva, K.M.; Snow, W.; Sousa, D.; Sridharan, T.K.; Stahm, W.; Stark, A.A.; Test, J.; Torstensson, K.; Venegas, P.; Walther, C.; Wei, T.S.; White, C.; Wieching, G.; Wijnands, R.; Wouterloot, J.G.A.; Yu, C.Y.; Yu, W.; Zeballos, M. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. The Astrophysical Journal Letters 2022, 930, L12. [CrossRef]
- Broderick, A.E.; Pesce, D.W.; Gold, R.; Tiede, P.; Pu, H.Y.; Anantua, R.; Britzen, S.; Ceccobello, C.; Chatterjee, K.; Chen, Y.; Conroy, N.S.; Crew, G.B.; Cruz-Osorio, A.; Cui, Y.; Doeleman, S.S.; Emami, R.; Farah, J.; Fromm, C.M.; Galison, P.; Georgiev, B.; Ho, L.C.; James, D.J.; Jeter, B.; Jimenez-Rosales, A.; Koay, J.Y.; Kramer, C.; Krichbaum, T.P.; Lee, S.S.; Lindqvist, M.; Martí-Vidal, I.; Menten, K.M.; Mizuno, Y.; Moran, J.M.; Moscibrodzka, M.; Nathanail, A.; Neilsen, J.; Ni, C.; Park, J.; Piétu, V.; Rezzolla, L.; Ricarte, A.; Ripperda, B.; Shao, L.; Tazaki, F.; Toma, K.; Torne, P.; Weintroub, J.; Wielgus, M.; Yuan, F.; Zhao, S.S.; Zhang, S. The Photon Ring in M87*. The Astrophysical Journal 2022, 935, 61. [CrossRef]
- Johnson, M.D.; Lupsasca, A.; Strominger, A.; Wong, G.N.; Hadar, S.; Kapec, D.; Narayan, R.; Chael, A.; Gammie, C.F.; Galison, P.; Palumbo, D.C.M.; Doeleman, S.S.; Blackburn, L.; Wielgus, M.; Pesce, D.W.; Farah, J.R.; Moran, J.M. Universal interferometric signatures of a black hole’s photon ring. Science Advances 2020, 6, eaaz1310. [CrossRef]
- Conover, E. Physicists dispute a claim of detecting a black hole’s ‘photon ring’, 2022.
- Gralla, S.E.; Lupsasca, A.; Marrone, D.P. The shape of the black hole photon ring: A precise test of strong-field general relativity. Physical Review D 2020, 102, 124004. [CrossRef]
- Lockhart, W.; Gralla, S.E. How narrow is the M87* ring – II. A new geometric model. Monthly Notices of the Royal Astronomical Society 2022, 517, 2462–2470. [CrossRef]
- Tiede, P.; Johnson, M.D.; Pesce, D.W.; Palumbo, D.C.M.; Chang, D.O.; Galison, P. Measuring Photon Rings with the ngEHT. Galaxies 2022, 10, 111. [CrossRef]
- Cárdenas-Avendaño, A.; Lupsasca, A. Prediction for the interferometric shape of the first black hole photon ring. Physical Review D 2023, 108, 064043. [CrossRef]
- Chen, X.H.; Li, A.; Zhang, K. On Graphene in the Interstellar Medium. The Astrophysical Journal 2017, 850, 104. [CrossRef]
- Zhang, W.; Liang, Q.; Li, X.; Ma, L.P.; Li, X.; Zhao, Z.; Zhang, R.; Cao, H.; Wang, Z.; Li, W.; Wang, Y.; Liu, M.; Yue, N.; Liu, H.; Hu, Z.; Liu, L.; Zhou, Q.; Li, F.; Zheng, W.; Ren, W.; Zou, M. Discovery of natural few-layer graphene on the Moon. National Science Review 2024, p. nwae211. [CrossRef]
- Abbott, B.P.; et al.. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters 2017, 119, 161101. [CrossRef]
- Szostek, R.; Góralski, P.; Szostek, K. Gravitational waves in Newton’s gravitation and criticism of gravitational waves resulting from the General Theory of Relativity (LIGO). Bulletin of the Karaganda University. "Physics" Series 2019, 96, 39–56. [CrossRef]
- Chojnacki, L.; Pohle, R.; Yan, H.; Akagi, Y.; Shannon, N. Gravitational wave analogs in spin nematics and cold atoms. Physical Review B 2024, 109, L220407. [CrossRef]
- Hawking, S.W., Ed. Three hundred years of gravitation, transferred to digital print ed.; Cambridge University Press: Cambridge, 2003.
- Kalogera, V.; Baym, G. The Maximum Mass of a Neutron Star. The Astrophysical Journal 1996, 470, L61–L64. [CrossRef]
- Ai, S.; Gao, H.; Zhang, B. What Constraints on the Neutron Star Maximum Mass Can One Pose from GW170817 Observations? The Astrophysical Journal 2020, 893, 146. [CrossRef]
- Wurdack, M.; Yun, T.; Katzer, M.; Truscott, A.G.; Knorr, A.; Selig, M.; Ostrovskaya, E.A.; Estrecho, E. Negative-mass exciton polaritons induced by dissipative light-matter coupling in an atomically thin semiconductor. Nature Communications 2023, 14, 1026. [CrossRef]
- Moroianu, A.; Wen, L.; James, C.W.; Ai, S.; Kovalam, M.; Panther, F.H.; Zhang, B. An assessment of the association between a fast radio burst and binary neutron star merger. Nature Astronomy 2023. [CrossRef]
- Lai, D. IXPE detection of polarized X-rays from magnetars and photon mode conversion at QED vacuum resonance. Proceedings of the National Academy of Sciences 2023, 120, e2216534120. [CrossRef]
- Anna-Thomas, R.; Connor, L.; Dai, S.; Feng, Y.; Burke-Spolaor, S.; Beniamini, P.; Yang, Y.P.; Zhang, Y.K.; Aggarwal, K.; Law, C.J.; Li, D.; Niu, C.; Chatterjee, S.; Cruces, M.; Duan, R.; Filipovic, M.D.; Hobbs, G.; Lynch, R.S.; Miao, C.; Niu, J.; Ocker, S.K.; Tsai, C.W.; Wang, P.; Xue, M.; Yao, J.M.; Yu, W.; Zhang, B.; Zhang, L.; Zhu, S.; Zhu, W. Magnetic field reversal in the turbulent environment around a repeating fast radio burst. Science 2023, 380, 599–603. [CrossRef]
- Li, D.; Wagle, P.; Chen, Y.; Yunes, N. Perturbations of Spinning Black Holes beyond General Relativity: Modified Teukolsky Equation. Physical Review X 2023, 13, 021029. [CrossRef]
- Sneppen, A.; Watson, D.; Bauswein, A.; Just, O.; Kotak, R.; Nakar, E.; Poznanski, D.; Sim, S. Spherical symmetry in the kilonova AT2017gfo/GW170817. Nature 2023, 614, 436–439. [CrossRef]
- Susskind, L. Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics; Little, Brown and Company, 2008.
- Peng, X.; Zhou, H.; Wei, B.B.; Cui, J.; Du, J.; Liu, R.B. Experimental Observation of Lee-Yang Zeros. Physical Review Letters 2015, 114, 010601. [CrossRef]
- Gnatenko, K.; Kargol, A.; Tkachuk, V. Lee–Yang zeros and two-time spin correlation function. Physica A: Statistical Mechanics and its Applications 2018, 509, 1095–1101. [CrossRef]
- Marques Muniz, A.L.; Wu, F.O.; Jung, P.S.; Khajavikhan, M.; Christodoulides, D.N.; Peschel, U. Observation of photon-photon thermodynamic processes under negative optical temperature conditions. Science 2023, 379, 1019–1023. [CrossRef]
- Wang, S.; Hu, Z.; Wu, Q.; Chen, H.; Prodan, E.; Zhu, R.; Huang, G. Smart patterning for topological pumping of elastic surface waves. Science Advances 2023, 9, eadh4310. [CrossRef]
- Fidkowski, L.; Hubeny, V.; Kleban, M.; Shenker, S. The Black Hole Singularity in AdS/CFT. Journal of High Energy Physics 2004, 2004, 014–014. [CrossRef]
- Ali, A.F.; Moulay, E.; Jusufi, K.; Alshal, H. Unitary symmetries in wormhole geometry and its thermodynamics. The European Physical Journal C 2022, 82, 1170. [CrossRef]
- Aksteiner, S.; Araneda, B. Kähler Geometry of Black Holes and Gravitational Instantons. Physical Review Letters 2023, 130, 161502. [CrossRef]
- Capozziello, S.; De Bianchi, S.; Battista, E. Avoiding singularities in Lorentzian-Euclidean black holes: The role of atemporality. Physical Review D 2024, 109, 104060. [CrossRef]
- Jussila, H.; Yang, H.; Granqvist, N.; Sun, Z. Surface plasmon resonance for characterization of large-area atomic-layer graphene film. Optica 2016, 3, 151. [CrossRef]
- Wallace, P.R. Erratum: The Band Theory of Graphite [Phys. Rev. 71, 622 (1947)]. Physical Review 1947, 72, 258–258. [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review 1935, 47, 777–780. [CrossRef]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1964, 1, 195–200. [CrossRef]
- Łukaszyk, S. A short note about graphene and the fine structure constant, 2020. [CrossRef]
- Łukaszyk, S. A short note about the geometry of graphene, 2020. [CrossRef]
- Mahajan, S. Calculation of the pi-like circular constants in curved geometry. ResearchGate, 2013.
- The 2023 Pole Marker, 2023.
- Schrinski, B.; Yang, Y.; Von Lüpke, U.; Bild, M.; Chu, Y.; Hornberger, K.; Nimmrichter, S.; Fadel, M. Macroscopic Quantum Test with Bulk Acoustic Wave Resonators. Physical Review Letters 2023, 130, 133604. [CrossRef]
- Tobar, M.E. Global representation of the fine structure constant and its variation. Metrologia 2005, 42, 129–133. [CrossRef]
- Lin, X.; Du, R.; Xie, X. Recent experimental progress of fractional quantum Hall effect: 5/2 filling state and graphene. National Science Review 2014, 1, 564–579. [CrossRef]
| 1 | |
| 2 | Data available online at the Canadian Hydrogen Intensity Mapping Experiment (CHIME) portal (https://www.chime-frb.ca/catalog). |
| 3 | X-ray Polarimetry Explorer (https://ixpe.msfc.nasa.gov). |
| 4 | We drop the HS subscripts in this section for clarity. |





| -form | ||||
| [m/s] | 299792458 | |||
| [C] | ||||
| [m] | ||||
| [kg] | ||||
| [s] | ||||
| [K] | ||||
| [m3] | ||||
| [kg m/s] | ||||
| [J] | ||||
| [m/s2] | ||||
| [kg/m3] | ||||
| [m2] | ||||
| [N] | ||||
| [kg m C−2] | 1.2569e-6 | 1.2012e-6 | 0.0387 | 72.8061 |
| T | ||||
| A | ||||
| R | ||||
| -3.0712 | -551.2868 | |||
| -3.2136 | -0.0179 |
| Event | ||||||
| GW170817 | 4.39 | 4.39 | 3.03 | |||
| GW190425 | 4.39 | 4.39 | 3.15 | |||
| GW200105 | 2.76 | 4.39 | 2.38 | |||
| GW200115 | 3 | 4.39 | 2.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
