Preprint
Article

This version is not peer-reviewed.

Minimax Lower Bounds for High-Dimensional Multi-Response Errors-in-Variables Regression

Submitted:

11 October 2022

Posted:

12 October 2022

You are already at the latest version

Abstract
Noisy data is always encountered in real applications, such as bioinformatics, neuroimage and remote sensing. Existing methods mainly consider linear or generalized linear errors-in-variables regression, while relatively little attention is paid for the multivariate response case, and how to evaluate the estimation performance under perturbed covariates is still an open question. In this paper, we consider the information-theoretic limitations of estimating a low-rank matrix in the multi-response errors-in-variables regression model. By application of the information theory and statistical techniques on concentration inequalities, the minimax lower bound is provided in terms of the squared Frobenius loss, which recaptures the rate provided under the clean covariate assumption in previous literatures. Hence our result further indicates that though under the more realistic errors-in-variables situation, no more samples are required so as to achieve a rate-optimal estimation.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated