Preprint
Article

This version is not peer-reviewed.

A Data-efficiency Training Framework for Deep Reinforcement Learning

Submitted:

30 September 2022

Posted:

30 September 2022

You are already at the latest version

Abstract
Sparse reward long horizon task is a major challenge for deep reinforcement learning algorithm. One of the key barriers is data-inefficiency. Even in the simulation environment, it usually takes weeks to training the agent. In this study, a data-efficiency training framework is proposed, where a curriculum learning is design for the agent in the simulation scenario. Different distributions of the initial state are set for the agent to get more informative reward during the whole training process. A fine-tuning of the parameters in the output layer of the neural network for value function is conduct to bridge the gap between sim-to-real. An experiment of UAV maneuver control is conducted in the proposed training framework to verify the method more efficient. We demonstrate that data-efficiency is different for the same data in different training stages.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated