Preprint
Technical Note

This version is not peer-reviewed.

Forecasting Energy Consumption Time Series Using Recurrent Neural Network in Tensorflow

A peer-reviewed article of this preprint also exists.

Submitted:

26 September 2022

Posted:

27 September 2022

You are already at the latest version

Abstract
The environmental issues we are currently facing require long-term prospective efforts for sustainable growth. Renewable energy sources seem to be one of the most practical and efficient alternatives in this regard. Understanding a nation's pattern of energy use and renewable energy production is crucial for developing strategic plans. No previous study has been performed to explore the dynamics of power consumption with the change in renewable energy production on a country-wide scale. In contrast, a number of deep learning algorithms demonstrated acceptable performance while handling sequential data in the era of data-driven predictions. In this study, we developed a scheme to investigate and predict total power consumption and renewable energy production time series for eleven years of data using a Recurrent Neural Network (RNN). The dynamics of the interaction between the total annual power consumption and renewable energy production are investigated through extensive Exploratory Data Analysis (EDA) and a feature engineering framework. The performance of the model is found satisfactory through the comparison of the predicted data with the observed data, visualization of the distribution of the errors and Root Mean Squared Error (RMSE) value of 0.084. Higher performance is achieved through the increase in the number of epochs and hyperparameter tuning. The proposed framework can be used and transferred to investigate the trend of renewable energy production and power consumption and predict the future scenarios for different communities. Incorporation of the cloud-based platform into the proposed pipeline may lead to real-time forecasting.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated