Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effects of the Vertices on the Topological Bound States in a Quasicrystalline Topological Insulator

Version 1 : Received: 27 July 2022 / Approved: 28 July 2022 / Online: 28 July 2022 (09:24:17 CEST)

A peer-reviewed article of this Preprint also exists.

Traverso, S.; Traverso Ziani, N.; Sassetti, M. Effects of the Vertices on the Topological Bound States in a Quasicrystalline Topological Insulator. Symmetry 2022, 14, 1736. Traverso, S.; Traverso Ziani, N.; Sassetti, M. Effects of the Vertices on the Topological Bound States in a Quasicrystalline Topological Insulator. Symmetry 2022, 14, 1736.

Abstract

The experimental realization of twisted bilayer graphene strongly pushed the inspection of bilayer systems. In this context, it was recently shown that a two layer Haldane model with a thirty degree rotation angle between the layers represents a higher order topological insulator, with zero-dimensional states isolated in energy and localized at the physical vertices of the nanostructure. We show, within a numerical tight binding approach, that the energy of the zero dimensional states strongly depends on the geometrical structure of the vertices. In the most extreme cases, once a specific band gap is considered, these bound states can even disappear just by changing the vertex structure.

Keywords

Higher order topological insulators; quasicrystals; bound states

Subject

Physical Sciences, Condensed Matter Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.