Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Bifurcation of Solutions of Ornstein-Zernike Equation in the Gas-Liquid Coexistence Region of Simple Fluids

Version 1 : Received: 28 June 2022 / Approved: 29 June 2022 / Online: 29 June 2022 (10:38:50 CEST)
Version 2 : Received: 23 February 2024 / Approved: 23 February 2024 / Online: 23 February 2024 (13:36:25 CET)

How to cite: MENON, S. Bifurcation of Solutions of Ornstein-Zernike Equation in the Gas-Liquid Coexistence Region of Simple Fluids. Preprints 2022, 2022060407. https://doi.org/10.20944/preprints202206.0407.v1 MENON, S. Bifurcation of Solutions of Ornstein-Zernike Equation in the Gas-Liquid Coexistence Region of Simple Fluids. Preprints 2022, 2022060407. https://doi.org/10.20944/preprints202206.0407.v1

Abstract

One objective of this paper is to investigate bifurcation of solutions of Ornstein-Zernike equation in liquid state theory for the gas-liquid coexistence region of simple fluids. The analysis uses a discrete form of the Ornstein-Zernike equation in real space, together with a closure relation which provides nearly self consistent thermodynamic properties of fluids governed by interaction potentials like the Lennard-Jones potential. Accurate asymptotic forms of correlation functions are incorporated in the real space algorithm so as to mitigate the influence of cutoff length used in the discrete approximations. It is found that there is no spinodal on the vapor side on a sub-critical isotherm. But there are fold bifurcation points on the vapor and liquid sides together with a 'no-real-solution-region' in between. This is followed by a region of negative compressibility extending up to the spinodal on the liquid side. The emerging picture is quite similar to that in the case of the hypernetted-chain-closure. It is also found that complex solutions connect the physical solutions that exist outside the 'no-real-solution-region' as well as in region of negative compressibility. The second objective of the paper, in the light of bifurcation scenario, is to evolve an interpretation of the coupling-parameter expansion of correlation functions pertaining to the region of negative compressibility. It is shown that the expansion provides an accurate description of results of the restricted ensembles, implied in mean field theories and simulation methods. Bifurcation of singlet density to inhomogeneous distributions at a spinodal is also established using a simple equation, which uses the direct correlation function. Thus the paper reestablishes the fact that restriction to a homogeneous singlet density is the root cause of all inconsistencies found in the gas-liquid coexistence region.

Keywords

Ornstein-Zernike equation; bifurcation of solutions; fold bifurcation points; liquid-vapor phase transition; coupling parameter expansion; Lennard-Jones potential

Subject

Physical Sciences, Condensed Matter Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.