Preprint
Review

This version is not peer-reviewed.

Agricultural Big Data Architectures in the Context of Climate Change: A Systematic Literature Review

A peer-reviewed article of this preprint also exists.

Submitted:

23 May 2022

Posted:

24 May 2022

You are already at the latest version

Abstract
Climate change is currently one of the main problems facing agriculture to achieve sustainability. It causes situations such as drought, increased rainfall, and increased diseases, causing a decrease in food production. In order to combat these problems, Agricultural Big Data contributes with tools that allow improving the understanding of complex, multivariate, and unpredictable agricultural ecosystems through the collection, storage, processing, and analysis of vast amounts of data from diverse heterogeneous sources. This research aims to discuss the advancement of technologies used in Agricultural Big Data architectures in the context of climate change. The study aims to highlight the tools used to process, analyze, and visualize the data and discuss the use of the architectures in the crop, water, climate, and soil management, especially to analyze the context, whether it is in Resilience Mitigation or Adaptation. The PRISMA protocol guided the study, finding 33 relevant papers. Despite the advances in this line of research, few papers were found that mention the components of the architectures, in addition to the lack of standards and the use of reference architectures, which allow the proper development of Agricultural Big Data in the context of climate change.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated