Preprint
Article

This version is not peer-reviewed.

A Wearable Shear Force Transducer Based on Color Spectrum Analysis

A peer-reviewed article of this preprint also exists.

Submitted:

04 February 2022

Posted:

23 February 2022

You are already at the latest version

Abstract
The need for miniaturized shear force sensors is expanding, particularly for biomedical applications. Examples include measuring interfacial shear stresses between a human and an external device (e.g., footwear or a prosthesis). However, there are considerable challenges in designing a shear sensor for these applications due to the need for a small package, low power requirements, and resistance to interference from motion artifact and electromagnetic fields. This paper presents the design, fabrication, and characterization sensor that measures two-axis shear force by detecting displacement between a color panel and a red, green, and blue light-sensing photodiode. The sensor response to applied displacements and forces was characterized under benchtop testing conditions. We also present the design of a prototype wireless version of the sensor for integration into footwear. The sensor exhibited strong agreement with gold standard measurements for two axis shear displacements (R2>0.99, RMSE≤5.0 µm) and forces (R2>0.99, RMSE≤0.94 N). This performance, along with the sensor’s scalability, miniaturized form, and low power requirements make it well-suited a variety of biomedical applications.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Subject: 
Engineering  -   Bioengineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated