Preprint
Article

This version is not peer-reviewed.

Roach Infestation Optimization MPPT Algorithm for Solar Photovoltaic System

A peer-reviewed article of this preprint also exists.

Submitted:

08 February 2022

Posted:

09 February 2022

You are already at the latest version

Abstract
Of all the renewable energy sources, solar photovoltaic (PV) power is estimated to be a popular source due to several advantages such as its free availability, absence of rotating parts, integration to building such as rooftops, and less maintenance cost. The nonlinear current-voltage (I–V) characteristics and power generated from a PV array primarily depend on solar insolation/irradiation and panel temperature. The extracted PV output power is influenced by the accuracy with which the nonlinear power–voltage (P–V) characteristic curve is traced by the maximum power point tracking (MPPT) controller. In this paper, a bio-inspired roach infestation optimization (RIO) algorithm is proposed to extract the maximum power from the PV system (PVS). To validate the usefulness of the RIO MPPT algorithm, MATLAB/Simulink simulations are performed under varying environmental conditions, for example, step changes in solar irradiance, and partial shading of the PV array. Furthermore, the search performance of the RIO algorithm is examined on different unconstrained benchmark functions, and it is that realized that the RIO algorithm has improved convergence characteristics in terms of finding the optimal solution than Particle swarm optimization (PSO). The results demonstrated that the RIO-based MPPT performs remarkably in tracking with high accuracy as the PSO-based MPPT.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated